Loading...
Please wait, while we are loading the content...
Molecular structure, reorientational dynamics, and intermolecular interactions in the neat ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate
| Content Provider | Semantic Scholar |
|---|---|
| Author | Antony, J. H. Mertens, Denis Breitenstein, Tobias Dölle, Andreas Wasserscheid, Peter Carper, W. R. |
| Copyright Year | 2004 |
| Abstract | Results on the molecular and liquid structure and the reorientational dynamics are reported for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). In quantum-chemical calculations for [BMIM][PF6] in the gas phase, hydrogen bonding between the proton at carbon 2 in the aromatic ring and the fluorine atoms of the hexafluorophosphate anion was found. From the analysis of 13C relaxation data, the reorientational motions were evaluated, and the Vogel-Fulcher-Tammann and Arrhenius activation energies for the overall and internal reorientational motions, respectively, of the different 13C-1H vectors are given as well as correlation times at 300 K. By performing molecular dynamics (MD) simulations, pair distribution functions between moieties in the cation and the phosphorous atom in the anion were determined. The pair distribution function for the proton at carbon 2 exhibits a particular sharp and strong maximum indicating a strong interaction with the anion. The quantum-chemical calculations, the motional parameters, and the results from the MD simulations support the existence of hydrogen bonding and the formation of ion pairs in the ionic liquid. |
| Starting Page | 255 |
| Ending Page | 261 |
| Page Count | 7 |
| File Format | PDF HTM / HTML |
| Volume Number | 76 |
| Alternate Webpage(s) | http://media.iupac.org/publications/pac/2004/pdf/7601x0255.pdf |
| Alternate Webpage(s) | https://doi.org/10.1351/pac200476010255 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |