Loading...
Please wait, while we are loading the content...
Dark and bright exciton formation, thermalization, and photoluminescence in monolayer transition metal dichalcogenides
| Content Provider | Semantic Scholar |
|---|---|
| Author | Selig, Malte Berghauser, Gunnar Richter, Marten Bratschitsch, Rudolf Knorr, Andreas Malic, Ermin |
| Copyright Year | 2017 |
| Abstract | The remarkably strong Coulomb interaction in atomically thin transition metal dichalcogenides (TMDs) results in an extraordinarily rich many-particle physics including the formation of tightly bound excitons. Besides optically accessible bright excitonic states, these materials also exhibit a variety of dark excitons. Since they can even lie below the bright states, they have a strong influence on the exciton dynamics, lifetimes, and photoluminescence. While very recently, the presence of dark excitonic states has been experimentally demonstrated, the origin of these states, their formation, and dynamics have not been revealed yet. Here, we present a microscopic study shedding light on time- and energy-resolved formation and thermalization of bright and dark intra- and intervalley excitons as well as their impact on the photoluminescence in different TMD materials. We demonstrate that intervalley dark excitons, so far widely overlooked in current literature, play a crucial role in tungsten-based TMDs giving rise to an enhanced photoluminescence and reduced exciton lifetimes at elevated temperatures. |
| Starting Page | 035017 |
| Ending Page | 035017 |
| Page Count | 1 |
| File Format | PDF HTM / HTML |
| DOI | 10.1088/2053-1583/aabea3 |
| Volume Number | 5 |
| Alternate Webpage(s) | https://arxiv.org/pdf/1703.03317v1.pdf |
| Alternate Webpage(s) | http://arxiv-export-lb.library.cornell.edu/pdf/1703.03317 |
| Alternate Webpage(s) | https://doi.org/10.1088/2053-1583%2Faabea3 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |