Loading...
Please wait, while we are loading the content...
Un lemme de Kazhdan-Margulis-Zassenhaus pour les g\'eom\'etries de Hilbert
| Content Provider | Semantic Scholar |
|---|---|
| Author | Crampon, Mickael Marquis, Ludovic |
| Copyright Year | 2011 |
| Abstract | We prove a Kazhdan-Margulis-Zassenhaus lemma for Hilbert geometries. More precisely, in every dimension $n$ there exists a constant $\varepsilon_n > 0$ such that, for any properly open convex set $\O$ and any point $x \in \O$, any discrete group generated by a finite number of automorphisms of $\O$, which displace $x$ at a distance less than $\varepsilon_n$, is virtually nilpotent. |
| Starting Page | 363 |
| Ending Page | 376 |
| Page Count | 14 |
| File Format | PDF HTM / HTML |
| DOI | 10.5802/ambp.330 |
| Alternate Webpage(s) | https://ambp.centre-mersenne.org/article/AMBP_2013__20_2_363_0.pdf |
| Alternate Webpage(s) | https://hal.archives-ouvertes.fr/hal-00600671/document |
| Alternate Webpage(s) | https://arxiv.org/pdf/1106.3156v3.pdf |
| Alternate Webpage(s) | https://doi.org/10.5802/ambp.330 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |