Loading...
Please wait, while we are loading the content...
Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals
| Content Provider | Semantic Scholar |
|---|---|
| Author | Dai, Zhigao Liu, Juhua Yang, Shuanglei Zhou, Li Ying Xiao, Xiangheng Jiang, Changzhong Roy, Vellaisamy A. L. |
| Copyright Year | 2015 |
| Abstract | Ideal SERS substrates for sensing applications should exhibit strong signal enhancement, generate a reproducible and uniform response, and should be able to fabricate in large-scale and low-cost. Herein, we demonstrate low-cost, highly sensitive, disposable and reproducible SERS substrates by means of screen printing Ag nanoparticles (NPs) on a plastic PET (Polyethylene terephthalate) substrates. While there are many complex methods for the fabrication of SERS substrates, screen printing is suitable for large-area fabrication and overcomes the uneven radial distribution. Using as-printed Ag substrates as the SERS platform, detection of various commonly known chemicals have been done. The SERS detection limit of Rhodamine 6G (R6G) is higher than the concentration of 1 × 10(-10) M. The relative standard deviation (RSD) value for 784 points on the detection of R6G and Malachite green (MG) is less than 20% revealing a homogeneous SERS distribution and high reproducibility. Moreover, melamine (MA) is detected in fresh liquid-milk without additional pretreatment, which may accelerate the application of rapid on-line detection of MA in liquid milk. Our screen printing method highlights the use of large-scale printing strategies for the fabrication of well-defined functional nanostructures with applications well beyond the field of SERS sensing. |
| File Format | PDF HTM / HTML |
| DOI | 10.1038/srep10208 |
| PubMed reference number | 25974125 |
| Journal | Medline |
| Volume Number | 5 |
| Alternate Webpage(s) | http://ftp.ncbi.nlm.nih.gov/pub/pmc/87/19/srep12205.PMC4507397.pdf |
| Alternate Webpage(s) | http://www.talkingaboutthescience.com/studies/Wu2014.pdf |
| Alternate Webpage(s) | https://doi.org/10.1038/srep10208 |
| Journal | Scientific reports |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |