Loading...
Please wait, while we are loading the content...
Similar Documents
Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components
| Content Provider | Semantic Scholar |
|---|---|
| Author | Chen, Tony |
| Copyright Year | 2006 |
| Abstract | The.previously.developed.Ko.closed-form.aging.theory.has.been.reformulated.into.a.more. compact.mathematical.form.for.easier.application ..A.new.equivalent.loading.theory.and.empirical. loading.theories.have.also.been.developed.and.incorporated.into.the.revised.Ko.aging.theory.for. the. prediction. of. a. safe. operational. life. of. airborne. failure-critical. structural. components ..The. new set of aging and loading theories were applied to predict the safe number of flights for the B-52B.aircraft.to.carry.a.launch.vehicle,.the.structural.life.of.critical.components.consumed.by. load. excursion. to. proof. load. value,. and. the. ground-sitting. life. of. B-52B. pylon. failure-critical. structural components. A special life prediction method was developed for the preflight predictions of.operational.life.of.failure-critical.structural.components.of.the.B-52H.pylon.system,.for.which. no flight data are available. noMenCLAtURe A. . crack.location.parameter.(A.=.1 .12.for.a.surface.crack) a . . depth..of.semi-elliptic.surface.crack,.in . ac o. . operational.limit.crack.size,.in .,. a Q K AM f a f c o IC K c p = = π σ* 2 2 ac p. . initial.crack.size.associated.with.proof.(or.limit).load,.in .,. a Q K AM c p IC K = π σ* 2 ( ) ac p old... initial.crack.based.on.original.proof.load.test,.in . ( ) ac p new... initial.crack.based.on.revised.proof.load.test,.in . a1. . crack.size.at.the.end.of.the.first.flight,.in .. a a c p + ∆ 1 C.. . coefficient.of.Walker.crack.growth.equation,. in . cycle ksi in . m ( ) c. . half-length.of.surface.crack,.in . D. . diameter E. . complete.elliptic.function.of.the.second.kind, E k d = − ∫ 1 sin 2 2φ φ π 0 2 F1 *. . number.of.flights.predicted.from.Ko.closed-form.aging.theory Fp . . number.of.flights.consumed.by.the.proof.load f operational.load.factor.associated.with.the.worst.cycle.of.a.random.loading. . . . spectrum,. f V V f o = < max * ,( ) 1 f equivalent.loading.factor.associated.with.an.equivalent-constant-amplitude. . . . loading.spectrum,. f V V f f = < max * ,( ) HF. . B-52H.front.hook HR.. . B-52H.rear.hook HFF. . B-52H.front.fitting 2 HRF. . B-52H.rear.fitting HLSB.... B-52H.pylon.lower.sway.brace. HXLV... Hyper-X.launch.vehicle i 1,.2,.3,.... ..,.integer.associated.with.the.i-th.half-cycle KIC . . mode.I.critical.stress.intensity.factor,.ksi in . Kmax. . mode.I.stress.intensity.factor.associated.with. σmax,.ksi in . ∆K .. . mode.I.stress.intensity.amplitude.associated.with.stress.amplitude,.(σ σ max min − ),. . . ksi in . ksi. . 1000.times.lb/in2 k modulus.of.elliptic.function,. k a c = − ( ) 1 2 Mk . . flaw.magnification.factor.(Mk =.1.for.a.shallow.crack) m. . Walker.exponent.associated.with. Kmax N. . number.of.stress.cycles. N1. . number.of.stress.cycles.consumed.during.the.first.flight n Walker.exponent.associated.with.R. Q. . surface.flaw.and.plasticity.factor,.Q E k Y = ( ) − ( ) 2 2 0 .212 σ σ * R. . radius Ro . . stress.or.load.ratio.associated.with.the.worst.cycle.of.random. . . . loading.spectrum,. R V V o o o o o = = σ σ min max min max / R. . stress.or.load.ratio.associated.with.constant-amplitude. . . . loading.spectrum,. R V V = = σ σ min max min max / SRB/DTV. solid.rocket.booster/drop.test.vehicle SUL. . Pegasus.pylon,.left.shackle.upper.part SUR.. . Pegasus.pylon,.right.shackle.upper.part SLL.. . Pegasus.pylon,.left.shackle.lower.part SLR.. . Pegasus.pylon,.right.shackle.lower.part t . . thickness,.in . V. . hook.load,.lb 3 VA B-52B.pylon.front.hook.load,.lb VBL . . B-52B.pylon.left.rear.hook.load ..lb. VBR . . B-52B.pylon.right.rear.hook.load,.lb VPFL . . Pegasus.pylon.front.left.hook.load,.lb VPFR . . Pegasus.pylon.front.right.hook.load,.lb VPRL . . Pegasus.pylon.rear.left.hook.load,.lb. VPRR . . Pegasus.pylon.rear.right.hook.load,.lb VA B-52B.pylon.front.hook VBL. . B-52B.pylon.left.rear.hook. VBR. . B-52B.pylon.right.rear.hook VPFL. .. Pegasus.pylon.front.left.hook. VPFR. .. Pegasus.pylon.front.right.hook. VPRL. .. Pegasus.pylon.rear.left.hook. VPRR. .. Pegasus.pylon.rear.right.hook. V* . . proof.load.for.any.critical.structural.component,.lb V . . applied.load.for.any.critical.structural.component,.lb V o max . . maximum.load.of.the.worst.cycle.of.random.loading.spectrum,.lb V o min . . minimum.load.of.the.worst.cycle.of.random.loading.spectrum,.lb Vmax . . maximum.load.of.equivalent.constant.amplitude.loading.spectrum,.lb Vmin . . minimum.load.of.equivalent.constant.amplitude.loading.spectrum,.lb VS . . mean.load.of.equivalent.constant.amplitude.loading.spectrum,.lb,.. . . . . V V V S = + ( )( ) max min 1 2 W. . weight.of.launch.vehicle,.lb α . . coefficient.of.thermal.expansion ∆a1. . amount.of.crack.growth.induced.by.the.first.flight,.in . ∆aG . . ground-sitting.crack.growth,.in . ∆ap. . amount.of.crack.growth.induced.by.the.proof.load,.in . δai . . crack.growth.induced.by.the.i-th.half.cycle,.in . 4 η stress-load.coefficient,.ksi/lb,.η σ = * * / V θc . . angular.location.of.critical.stress.point,.rad ν . . Poisson.ratio ρ . . density,.lb/in3 σ*. . tangential.stress.at.critical.stress.point.induced.by.the.proof.(limit).load.V*,.ksi, . . . σ η * * = V σ A. . tangential.stress.at.critical.stress.point.of.B-52B.pylon.front.hook.induced.by. . . . VA ,.ksi σ BL. . tangential.stress.at.critical.stress.point.of.B-52B.pylon.rear.left.hook.induced.by. . . . VBL ,.ksi. σ BR. . tangential.stress.at.critical.stress.point.of.B-52B.pylon.rear.right.hook.induced.by. . . . VBR ,.ksi. σ PFL. . tangential.stress.at.critical.stress.point.of.Pegasus.pylon.front.left.hook.induced.by . . . VPFL,.ksi. σ PFR. . tangential.stress.at.critical.stress.point.of.Pegasus.pylon.front.right.hook.induced. . . . by.VPFR,.ksi. σ PRL . . tangential.stress.at.critical.stress.point.of.Pegasus.pylon.rear.left.hook.induced.by. . . . VPRL ,.ksi. σ PRR . . tangential.stress.at.critical.stress.point.of.Pegasus.pylon.rear.right.hook.induced. . . . by.VPRR ,.ksi. σmax o .. . tangential.stress.at.critical.stress.point.associated.with.operational.peak.load,. . . . V o max ,.ksi σU . . ultimate.tensile.stress,.ksi σY . . yield.stress,.ksi σmax . . maximum.stress.of.constant.amplitude.loading.cycles,..ksi σmin . . minimum.stress.of.constant.amplitude.loading.cycles,.ksi σ t . . tangential.stress.along.hook.inner.boundary,.ksi ( )max σ t . maximum.value.of.σ t ,.ksi σθ . . tangential.stress.in.θ -direction,.ksi ( )max σθ . maximum.value.of.σθ ,.ksi 5 τU . . ultimate.shear.stress,.ksi φ . . angular.coordinate.for.semielliptic.surface.crack,.rad (.)i . . quantity.associated.with.the.i-th.half-cycle.of.random.loading.spectrum (.)*. . quantity.associated.with.proof.load. IntRoDUCtIon Load-carrying. structural. components. with. L-shaped. geometry. or. containing. holes. will. certainly.have.stress.concentration.problems ..When.subjected.to.cyclic.loading,.the.peak.stress. concentration.point.could.be.with.fatigue.crack.initiation.sites ..The.structural.components,.which. contain.stress.concentration.sites,.may.be.called.failure-critical.structural.components .... The NASA Dryden B-52B launch aircraft has been used to carry various types of flight research. vehicles. for. high-altitude. air-launching. tests ..The. test. vehicle. is. mated. to. the. B-52B. aircraft. pylon. through. one. L-shaped. front. hook. and. two. identical. L-shaped. rear. hooks .. The. L-shaped.geometry.always.induces.a.stress.concentration.problem.in.the.hooks ..The.critical.stress. point.at.the.hook.inner.boundary,.where.the.tangential.tensile.stress.reaches.a.maximum.at.the. inner.curved.boundary,.is.the.potential.fatigue.crack.initiation.site .. During. the. early. stages. (1983). of. the. air-launching. tests. of. the. solid. rocket. booster. drop. test.vehicle.(SRB/DTV,.49,000.lb),.the.two.B-52B.pylon.rear.hooks.(made.of.4340.steel).failed. almost. simultaneously.during. the. towing.of. the.B-52B.carrying. the.SRB/DTV.on. a. relatively. smooth.taxiway.(low-amplitude.dynamic.loading) ..Microscopic.examinations.of.the.hook.fracture. surfaces.revealed.that.the.left.rear.hook.had.a.micro-surface.crack.of.0 .031.in ..deep,.and.the.right. rear.hook.had.a.0 .038-in ..deep.micro-surface.crack.at.the.respective.critical.stress.points.at.each. hook inner boundary (ref. 8). Those micro-surface cracks escaped preflight detection because of masking by the plating film. Those fatigue cracks must have been initiated from the past repeated cyclic loadings under different flight test programs, and possibly from surface corrosion. Fortunately,.the.hook.failures.occurred.during.taxiing ..If.the.hook.failures.would.have.occurred. during the takeoff run or during the captive flight, a catastrophic accident could have occurred. This.type.of.accident.underscores.the.need.for.development.of.reliable.aging.theories.for.accurate. operational.life.predictions.of.failure-critical.structural.components.of.any.air.launching.system. (e .g .,.B-52B.pylon,.Pegasus®.(Orbital.Sciences.Corporation,.Dulles,.Virginia).adapter.pylon,.and. B-52H.pylon) .. Currently,. the. B-52B. aircraft. is. to. carry,. through. a. special. Pegasus. adapter. pylon,. the. Hyper-X launch vehicle (HXLV) air-launching of (40,000 lb) for the X-43 flight research vehicle . (3,000 lb) for a Mach 7~10 hypersonic flight test. The Pegasus adapter pylon has several . failure-critical.components.(two.identical.Pegasus.adapter.shackles.with.rectangular.and.circular. holes,.and.four.identical.L-shaped.Pegasus.hooks) ..The.operational.life.spans.of.those.components. are.still.not.known . |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070035048.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |