Loading...
Please wait, while we are loading the content...
Sur la th\'eorie spectrale des m\'etriques int\'egrables sur une surface de Riemann compacte
| Content Provider | Semantic Scholar |
|---|---|
| Author | Hajli, Mounir |
| Copyright Year | 2013 |
| Abstract | We continue the study of the spectral theory associated to integrable metrics, started in our previous paper arXiv:1301.1793 [math.SP]. We introduce the notion of 1-integrable metric on line-bundles on a compact Riemann surface. We extend the spectral theory of generalized Laplacians to line-bundles equipped with 1-integrable metrics. As an application, we recover the following identity: [\zeta'_{\Delta_{\bar{\mathcal{O}(m)}_\infty}}(0)=T_g\bigl((\p^1,\omega_\infty); \bar{\mathcal{O}(m)}_\infty \bigr),] obtained using direct computations in arXiv:1301.1792 [math.NT]. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://arxiv.org/pdf/1301.3051v2.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |