Loading...
Please wait, while we are loading the content...
Similar Documents
A Multi-scale Segmentation Method of Oil Spills in SAR Images Based on JSEG and Spectral Clustering
| Content Provider | Semantic Scholar |
|---|---|
| Author | Wang, Chao Xu, Lizhong Wang, Xin Huang, Fengchen |
| Copyright Year | 2014 |
| Abstract | Image segmentation is a key step of oil spills detection in SAR images. For the problem that the traditional multi-spectral clustering algorithm with the features extraction by GLCM (Gray-Level Co-occurrence Matrix) has such limitations as direction sensitivities and difficulties in selecting the best feature combination etc., this paper proposes a multi-scale segmentation method of oil spills in SAR images based on JSEG and spectral clustering. Multi-scale J-images are used to extract the multi-features and the Laplace matrix is clustered by the K-means method. Finally, a decision-level fusion strategy is used to fuse the segmentation results from different scales. Two sets of experiments show that, compared to the traditional spectral clustering methods based on the gray feature and multi-textual features, the proposed method has higher accuracy and stronger robustness. |
| Starting Page | 425 |
| Ending Page | 432 |
| Page Count | 8 |
| File Format | PDF HTM / HTML |
| DOI | 10.14257/ijsip.2014.7.1.39 |
| Alternate Webpage(s) | http://www.sersc.org/journals/IJSIP/vol7_no1/39.pdf |
| Alternate Webpage(s) | https://doi.org/10.14257/ijsip.2014.7.1.39 |
| Volume Number | 7 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |