Loading...
Please wait, while we are loading the content...
Similar Documents
Demonstration and characterization of ultrafast laser-inscribed mid-infrared waveguides in chalcogenide glass IG 2
| Content Provider | Semantic Scholar |
|---|---|
| Author | Helen Butcher David Maclachlan Lee, Dong Hoon Róbert Thomson Weidmann, Damien |
| Copyright Year | 2018 |
| Abstract | The first demonstration and characterization of ultrafast laser-inscribed midinfrared (mid-IR) waveguides in Ge33As12Se55 chalcogenide glass (IG2) is presented. From mode profile and throughput measurements, combined with modelling, the characteristics of the waveguides inscribed in IG2 are studied at 7.8 μm, and compared to those of waveguides inscribed in gallium lanthanum sulfide for reference. Two methods to estimate the local variation of refractive index induced by the inscription process are presented, which indicate a variation of ~0.010 to 0.015 across the inscription parameters investigated. This variation, together with a higher robustness of the material to inscription and large transparency covering the entire mid-IR spectral domain, suggest that IG2 has great potential for integrated optical applications in the mid-IR developed through the ultrafast laser inscription method. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI OCIS codes: (130.3060) Infrared; (130.3130) Integrated optics materials; (140.5965) Semiconductor lasers, quantum cascade; (220.4610) Optical fabrication; (230.7370) Waveguides. References and links 1. T. Schädle and B. Mizaikoff, “Mid-infrared waveguides: A perspective,” Appl. Spectrosc. 70(10), 1625–1638 (2016). 2. I. S. Glass, Handbook of Infrared Astronomy (Cambridge University, 1999). 3. H.-K. Hsiao, K. A. Winick, J. D. Monnier, and J.-P. Berger, “An infrared integrated optic astronomical beam combiner for stellar interferometry at 3-4 μm,” Opt. Express 17(21), 18489–18500 (2009). 4. A. Arriola, S. Mukherjee, D. Choudhury, L. Labadie, and R. R. Thomson, “Ultrafast laser inscription of mid-IR directional couplers for stellar interferometry,” Opt. Lett. 39(16), 4820–4822 (2014). 5. J. Kasberger, T. Fromherz, A. Saeed, and B. Jakoby, “Miniaturized integrated evanescent field IR-absorption sensor: Design and experimental verification with deteriorated lubrication oil,” Vib. Spectrosc. 56, 129–135 (2011). 6. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale mid-infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip 13(11), 2161–2166 (2013). 7. V. M. Lavchiev and B. Jakoby, “Photonics in the mid-infrared: challenges in single-chip integration and absorption sensing,” IEEE J. Sel. Top. Quant. 23(2), 8200612 (2017). 8. R. Soref, “Toward silicon-based longwave integrated optoelectronics (LIO),” Proc. SPIE 6898, 689809 (2008). 9. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier, Jr., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006). 10. A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. P. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. B. Shaw, M. Ireland, P. Tuthill, and M. J. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698–711 (2017). Vol. 26, No. 8 | 16 Apr 2018 | OPTICS EXPRESS 10930 #321212 https://doi.org/10.1364/OE.26.010930 Journal © 2018 Received 1 Feb 2018; revised 6 Apr 2018; accepted 6 Apr 2018; published 13 Apr 2018 11. R. R. Thomson, R. J. Harris, T. A. Birks, G. Brown, J. Allington-Smith, and J. Bland-Hawthorn, “Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics,” Opt. Lett. 37(12), 2331–2333 (2012). 12. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37(3), 392–394 (2012). 13. Vitron IG2 datasheet, http://www.vitron.de/english/IR-Glaeser/Daten-Infrarotglaeser.php. 14. Optical constants of Vitron IG2, https://refractiveindex.info/?shelf=glass&book=VITRON-IG&page=IG2. 15. D. Lee, D. G. MacLachlan, H. L. Butcher, R. A. Brownsword, D. Weidmann, C. R. Cunningham, H. Schnetler, and R. R. Thomson, “Mid-infrared transmission gratings in chalcogenide glass manufactured using ultrafast laser inscription,” Proc. SPIE 9912, 91222X (2016). 16. H. L. Butcher, D. Lee, R. Brownsword, D. G. MacLachlan, R. R. Thomson, and D. Weidmann, “Ultrafast laserinscribed mid-infrared transmission gratings in IG2: modelling and high-resolution spectral characterization,” Opt. Express 25(26), 33617–33628 (2017). 17. Gallium Lanthanum Sulphide (GLS) datasheet, https://www.crystran.co.uk/optical-materials/gallium-lanthanumsulphide-gls. 18. D. G. MacLachlan, R. R. Thomson, C. R. Cunningham, and D. Lee, “Mid-infrared volume phase gratings manufactured using ultrafast laser inscription,” Opt. Mater. Express 3(10), 1616–1623 (2013). 19. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14(26), 13158–13163 (2006). 20. R. R. Thomson, N. D. Psaila, H. T. Bookey, D. T. Reid, and A. K. Kar, “Controlling the cross-section of ultrafast laser inscribed optical waveguides,” in Femtosecond Laser Micromachining, R. Osselame, G. Cerullo and R. Ramponi, ed. (Springer-Verlag, 2012). 21. K. Okamoto, Fundamentals of Optical Waveguides, (Elsevier, 2006). 22. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital holographic measurement,” Appl. Opt. 51(10), 1503–1515 (2012). 23. P. Bastock, C. Craig, K. Khan, E. Weatherby, J. Yao, and D. W. Hewak, “Properties of gallium lanthanum sulphide glass,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | http://damien.weidmann.free.fr/peer_reviewed/2018_OE_IG2_waveguides.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |