Loading...
Please wait, while we are loading the content...
Sharp Affine and Improved Moser–Trudinger–Adams Type Inequalities on Unbounded Domains in the Spirit of Lions
| Content Provider | Semantic Scholar |
|---|---|
| Author | Lâm, Nguyễn Xuân Lu, Guozhen Tang, Hanli |
| Copyright Year | 2017 |
| Abstract | The purpose of this paper is threefold. First, we prove sharp singular affine Moser–Trudinger inequalities on both bounded and unbounded domains in $${\mathbb {R}}^{n}$$Rn. In particular, we will prove the following much sharper affine Moser–Trudinger inequality in the spirit of Lions (Rev Mat Iberoamericana 1(2):45–121, 1985) (see our Theorem 1.4): Let $$\alpha _{n}=n\left( \frac{n\pi ^{\frac{n}{2}}}{\Gamma (\frac{n}{2}+1)}\right) ^{\frac{1}{n-1}}$$αn=nnπn2Γ(n2+1)1n-1, $$0\le \beta 0$$τ>0. Then there exists a constant $$C=C\left( n,\beta \right) >0$$C=Cn,β>0 such that for all $$0\le \alpha \le \left( 1-\frac{\beta }{n}\right) \alpha _{n}$$0≤α≤1-βnαn and $$u\in C_{0}^{\infty }\left( {\mathbb {R}}^{n}\right) \setminus \left\{ 0\right\} $$u∈C0∞Rn\0 with the affine energy $$~{\mathcal {E}}_{n}\left( u\right) <1$$Enu<1, we have $$\begin{aligned} {\displaystyle \int \nolimits _{{\mathbb {R}}^{n}}} \frac{\phi _{n,1}\left( \frac{2^{\frac{1}{n-1}}\alpha }{\left( 1+{\mathcal {E}}_{n}\left( u\right) ^{n}\right) ^{\frac{1}{n-1}}}\left| u\right| ^{\frac{n}{n-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( n,\beta \right) \frac{\left\| u\right\| _{n}^{n-\beta }}{\left| 1-{\mathcal {E}}_{n}\left( u\right) ^{n}\right| ^{1-\frac{\beta }{n}}}. \end{aligned}$$∫Rnϕn,121n-1α1+Enun1n-1unn-1xβdx≤Cn,βunn-β1-Enun1-βn.Moreover, the constant $$\left( 1-\frac{\beta }{n}\right) \alpha _{n}$$1-βnαn is the best possible in the sense that there is no uniform constant $$C(n, \beta )$$C(n,β) independent of u in the above inequality when $$\alpha >\left( 1-\frac{\beta }{n}\right) \alpha _{n}$$α>1-βnαn. Second, we establish the following improved Adams type inequality in the spirit of Lions (Theorem 1.8): Let $$0\le \beta <2m$$0≤β<2m and $$\tau >0$$τ>0. Then there exists a constant $$C=C\left( m,\beta ,\tau \right) >0$$C=Cm,β,τ>0 such that $$\begin{aligned} \underset{u\in W^{2,m}\left( {\mathbb {R}}^{2m}\right) , \int _{ {\mathbb {R}}^{2m}}\left| \Delta u\right| ^{m}+\tau \left| u\right| ^{m} \le 1}{\sup } {\displaystyle \int \nolimits _{{\mathbb {R}}^{2m}}} \frac{\phi _{2m,2}\left( \frac{2^{\frac{1}{m-1}}\alpha }{\left( 1+\left\| \Delta u\right\| _{m}^{m}\right) ^{\frac{1}{m-1}}}\left| u\right| ^{\frac{m}{m-1}}\right) }{\left| x\right| ^{\beta }}dx\le C\left( m,\beta ,\tau \right) , \end{aligned}$$supu∈W2,mR2m,∫R2mΔum+τum≤1∫R2mϕ2m,221m-1α1+Δumm1m-1umm-1xβdx≤Cm,β,τ,for all $$0\le \alpha \le \left( 1-\frac{\beta }{2m}\right) \beta (2m,2)$$0≤α≤1-β2mβ(2m,2). When $$\alpha >\left( 1-\frac{\beta }{2m}\right) \beta (2m,2)$$α>1-β2mβ(2m,2), the supremum is infinite. In the above, we use $$\begin{aligned} \phi _{p,q}(t)=e^{t}- {\displaystyle \sum \limits _{j=0}^{j_{\frac{p}{q}}-2}} \frac{t^{j}}{j!},\,\,\,j_{\frac{p}{q}}=\min \left\{ j\in {\mathbb {N}} :j\ge \frac{p}{q}\right\} \ge \frac{p}{q}. \end{aligned}$$ϕp,q(t)=et-∑j=0jpq-2tjj!,jpq=minj∈N:j≥pq≥pq.The main difficulties of proving the above results are that the symmetrization method does not work. Therefore, our main ideas are to develop a rearrangement-free argument in the spirit of Lam and Lu (J Differ Equ 255(3):298–325, 2013; Adv Math 231(6): 3259–3287, 2012), Lam et al. (Nonlinear Anal 95: 77–92, 2014) to establish such theorems. Third, as an application, we will study the existence of weak solutions to the biharmonic equation $$\begin{aligned} \left\{ \begin{array}{l} \Delta ^{2}u+V(x)u=f(x,u)\text { in }{\mathbb {R}}^{4}\\ u\in H^{2}\left( {\mathbb {R}}^{4}\right) ,~u\ge 0 \end{array} \right. , \end{aligned}$$Δ2u+V(x)u=f(x,u)inR4u∈H2R4,u≥0,where the nonlinearity f has the critical exponential growth. |
| Starting Page | 300 |
| Ending Page | 334 |
| Page Count | 35 |
| File Format | PDF HTM / HTML |
| DOI | 10.1007/s12220-016-9682-2 |
| Volume Number | 27 |
| Alternate Webpage(s) | https://www2.math.uconn.edu/~guozhenlu/papers/LamLuTang-JGEA2017.pdf |
| Alternate Webpage(s) | https://doi.org/10.1007/s12220-016-9682-2 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |