Loading...
Please wait, while we are loading the content...
Vibrational frequencies and intensities of H‐bonded systems. 1:1 and 1:2 complexes of NH3 and PH3 with HF
| Content Provider | Semantic Scholar |
|---|---|
| Author | Kurnig, Ingrid J. Szczęśniak, Małgorzata M. Scheiner, Steve |
| Copyright Year | 1987 |
| Abstract | Frequencies and intensities are calculated by ab initio methods for all vibrational modes of the 1:1 H3X–HF and 1:2 H3X–HF–HF complexes (X=N,P). The HF stretching frequencies are subject to red shifts, roughly proportional to the strength of the H bond, and to manyfold increases in intensity. Although the intramolecular frequency shifts within the proton acceptors are relatively modest, the intensities of the NH3 stretches are magnified by several orders of magnitude as a result of H bonding (in contrast to PH3 which exhibits little sensitivity in this regard). The frequencies and intensities corresponding to bending of the H3X–HF H‐bond rise with increasing H‐bond strength while the properties of the other intermolecular modes appear somewhat anomalous at first sight. The intensity patterns are analyzed by means of atomic polar tensors which reveal that intensification of the proton donor stretch is chiefly due to increasing charge flux associated with H‐bond formation. The different behavior of the N–H ... |
| Starting Page | 2214 |
| Ending Page | 2224 |
| Page Count | 11 |
| File Format | PDF HTM / HTML |
| DOI | 10.1063/1.453148 |
| Volume Number | 87 |
| Alternate Webpage(s) | https://works.bepress.com/steve_scheiner/249/download/ |
| Alternate Webpage(s) | https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1066&context=chem_facpub |
| Alternate Webpage(s) | https://doi.org/10.1063/1.453148 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |