Loading...
Please wait, while we are loading the content...
Similar Documents
Character classification framework based on support vector machine and k-nearest neighbour schemes
| Content Provider | Semantic Scholar |
|---|---|
| Author | Siriteerakul, Teera Boonjing, Veera Gullayanon, Rutchanee |
| Copyright Year | 2016 |
| Abstract | The problem of Thai character classification can be difficult because of the large number of characters and the similarity in the shape of many characters. While previous work combined different fonts to build their classifier, this paper proposes a framework based on support vector machine (SVM) and k-NN schemes to exploit characteristics of each font separately. In this framework, each font is used to train an SVM separately. With the trained SVMs, a vector of predicted values can be produced for any input image. Then a class label of the input image can be found by a k-NN based scheme. The proposed framework performs well with familiar fonts while providing an acceptable performance on unfamiliar fonts. |
| Starting Page | 46 |
| Ending Page | 46 |
| Page Count | 1 |
| File Format | PDF HTM / HTML |
| DOI | 10.2306/scienceasia1513-1874.2016.42.046 |
| Volume Number | 42 |
| Alternate Webpage(s) | http://www.scienceasia.org/2016.42.n1/scias42_46.pdf |
| Alternate Webpage(s) | https://doi.org/10.2306/scienceasia1513-1874.2016.42.046 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |