Loading...
Please wait, while we are loading the content...
Similar Documents
Lipschitz mappings on the unit sphere of an infinite-dimensional normed space
| Content Provider | Semantic Scholar |
|---|---|
| Author | Jiménez-Vargas, Antonio Mena-Jurado, J. F. Navarro-Pascual, J. C. |
| Copyright Year | 2002 |
| Abstract | Abstract. Let X be an infinite-dimensional normed space. We prove the following: There exists a Lipschitz mapping $ \upsilon $ from the unit sphere S(X) into itself without approximate fixed or antipodal points, that is,¶¶ $ \textrm{inf}\, \{\parallel \upsilon(x) \pm x \parallel\, : x \in S(X)\} > 0. $ |
| Starting Page | 379 |
| Ending Page | 384 |
| Page Count | 6 |
| File Format | PDF HTM / HTML |
| DOI | 10.1007/PL00012460 |
| Volume Number | 79 |
| Alternate Webpage(s) | http://hera.ugr.es/doi/15085090.pdf |
| Alternate Webpage(s) | https://doi.org/10.1007/PL00012460 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |