Loading...
Please wait, while we are loading the content...
Similar Documents
Lyapunov Stability and Adaptive Regulation of a Class of Nonlinear Nonautonomous Second-Order Differential Equations
| Content Provider | Semantic Scholar |
|---|---|
| Author | Sen, Manuel De La |
| Abstract | This paper presents an adaptive regulation scheme for a class of ordinary nonlinear nonautonomous second-order differential equations which includes as particular cases a number of particular differential equations which occur in applications. The unforced reference model is proposed to be a stable differential parametrization within the general class dealt with. Therefore, some sufficient Lyapunov’s stability conditions for such a class are previously investigated which can be used, in particular, to set an appropriate reference model. The resulting closed-loop adaptive scheme is proved to be stable and it involves a parameter estimation scheme of leastsquares type which is proved to possess all suitable properties in terms of estimates boundedness and asymptotic convergence of the estimates to finite limits as well as time-integrability of the squared adaptation error. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://page-one.springer.com/pdf/preview/10.1023/A:1015611521852 |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |