Loading...
Please wait, while we are loading the content...
Similar Documents
Proximity in Triangulations and Quadrangulations.
| Content Provider | Semantic Scholar |
|---|---|
| Author | Czabarka, Eva Dankelmann, Peter Olsen, Trevor Székely, László A. |
| Copyright Year | 2020 |
| Abstract | Let $ G $ be a connected graph. If $\bar{\sigma}(v)$ denotes the arithmetic mean of the distances from $v$ to all other vertices of $G$, then the proximity, $\pi(G)$, of $G$ is defined as the smallest value of $\bar{\sigma}(v)$ over all vertices $v$ of $G$. We give upper bounds for the proximity of simple triangulations and quadrangulations of given order and connectivity. We also construct simple triangulations and quadrangulations of given order and connectivity that match the upper bounds asymptotically and are likely optimal. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://arxiv.org/pdf/2001.09012v1.pdf |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |