Loading...
Please wait, while we are loading the content...
Similar Documents
Rational points on Erdős–Selfridge superelliptic curves
| Content Provider | Scilit |
|---|---|
| Author | Bennett, Michael A. Siksek, Samir |
| Copyright Year | 2016 |
| Description | Journal: Compositio Mathematica Given $k\geqslant 2$, we show that there are at most finitely many rational numbers $x$ and $y\neq 0$ and integers $\ell \geqslant 2$ (with $(k,\ell )\neq (2,2)$) for which $\begin{eqnarray}x(x+1)\cdots (x+k-1)=y^{\ell }.\end{eqnarray}$ In particular, if we assume that $\ell$ is prime, then all such triples $(x,y,\ell )$ satisfy either $y=0$ or $\ell <\exp (3^{k})$. |
| Ending Page | 2254 |
| Starting Page | 2249 |
| ISSN | 00221295 |
| e-ISSN | 15705846 |
| DOI | 10.1112/s0010437x16007569 |
| Journal | Compositio Mathematica |
| Issue Number | 11 |
| Volume Number | 152 |
| Language | English |
| Publisher | Wiley-Blackwell |
| Publisher Date | 2016-07-14 |
| Access Restriction | Open |
| Subject Keyword | Journal: Compositio Mathematica Mathematical Physics Rational Points Selfridge Superelliptic Curves |
| Content Type | Text |
| Resource Type | Article |
| Subject | Algebra and Number Theory |