Loading...
Please wait, while we are loading the content...
Similar Documents
mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones
| Content Provider | Scilit |
|---|---|
| Author | Topolnik, Lisa Azzi, Mounia Kougioumoutzakis, André Lacaille, Jean-Claude |
| Copyright Year | 2006 |
| Description | Journal: The Journal of physiology Hippocampal inhibitory interneurones demonstrate pathway- and synapse-specific rules of transmission and plasticity, which are key determinants of their role in controlling pyramidal cell excitability. Mechanisms underlying long-term changes at interneurone excitatory synapses, despite their importance, remain largely unknown. We use two-photon calcium imaging and whole-cell recordings to determine the Ca2+ signalling mechanisms linked specifically to group I metabotropic glutamate receptors (mGluR1alpha and mGluR5) and their role in hebbian long-term potentiation (LTP) in oriens/alveus (O/A) interneurones. We demonstrate that mGluR1alpha activation elicits dendritic Ca2+ signals resulting from Ca2+ influx via transient receptor potential (TRP) channels and Ca2+ release from intracellular stores. By contrast, mGluR5 activation produces dendritic Ca2+ transients mediated exclusively by intracellular Ca2+ release. Using Western blot analysis and immunocytochemistry, we show mGluR1alpha-specific extracellular signal-regulated kinase (ERK1/2) activation via Src in CA1 hippocampus and, in particular, in O/A interneurones. Moreover, we find that mGluR1alpha/TRP Ca2+ signals in interneurone dendrites are dependent on activation of the Src/ERK cascade. Finally, this mGluR1alpha-specific Ca2+ signalling controls LTP at interneurone synapses since blocking either TRP channels or Src/ERK and intracellular Ca2+ release prevents LTP induction. Thus, our findings uncover a novel molecular mechanism of interneurone-specific Ca2+ signalling, critical in regulating synaptic excitability in hippocampal networks. |
| Related Links | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1819425/pdf |
| Ending Page | 131 |
| Page Count | 17 |
| Starting Page | 115 |
| ISSN | 00223751 |
| e-ISSN | 14697793 |
| DOI | 10.1113/jphysiol.2006.112896 |
| Journal | The Journal of physiology |
| Issue Number | 1 |
| Volume Number | 575 |
| Language | English |
| Publisher | Wiley-Blackwell |
| Publisher Date | 2006-08-08 |
| Access Restriction | Open |
| Subject Keyword | Journal: The Journal of physiology Long Term Potentiation Calcium Signalling |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physiology Sports Science |