Loading...
Please wait, while we are loading the content...
Similar Documents
Scan, plan, print, practice, perform: Development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery
| Content Provider | Scilit |
|---|---|
| Author | Hermsen, Joshua L. Burke, Thomas M. Seslar, Stephen P. Owens, David S. Ripley, Beth Mokadam, Nahush A. Verrier, Edward D. |
| Copyright Year | 2016 |
| Description | Journal: Journal of Thoracic and Cardiovascular Surgery Static 3-dimensional printing is used for operative planning in cases that involve difficult anatomy. An interactive 3D print allowing deliberate surgical practice would represent an advance.Two patients with hypertrophic cardiomyopathy had 3-dimensional prints constructed preoperatively. Stereolithography files were generated by segmentation of chest computed tomographic scans. Prints were made with hydrogel material, yielding tissue-like models that can be surgically manipulated. Septal myectomy of the print was performed preoperatively in the simulation laboratory. Volumetric measures of print and patient resected specimens were compared. An assessment tool was developed and used to rate the utility of this process. Clinical and echocardiographic data were reviewed.There was congruence between volumes of print and patient resection specimens (patient 1, 3.5 cm(3) and 3.0 cm(3), respectively; patient 2, 4.0 cm(3) and 4.0 cm(3), respectively). The prints were rated useful (3.5 and 3.6 on a 5-point Likert scale) for preoperative visualization, planning, and practice. Intraoperative echocardiographic assessment showed adequate relief of left ventricular outflow tract obstruction (patient 1, 80 mm Hg to 18 mm Hg; patient 2, 96 mm Hg to 9 mm Hg). Both patients reported symptomatic improvement (New York Heart Association functional class III to class I).Three-dimensional printing of interactive hypertrophic cardiomyopathy heart models allows for patient-specific preoperative simulation. Resection volume relationships were congruous on both specimens and suggest evidence of construct validity. This model also holds educational promise for simulation of a low-volume, high-risk operation that is traditionally difficult to teach. |
| Related Links | http://www.jtcvs.org/article/S0022522316309370/pdf http://www.jtcvsonline.org/article/S0022522316309370/pdf |
| Ending Page | 140 |
| Page Count | 9 |
| Starting Page | 132 |
| ISSN | 00225223 |
| e-ISSN | 1097685X |
| DOI | 10.1016/j.jtcvs.2016.08.007 |
| Journal | Journal of Thoracic and Cardiovascular Surgery |
| Issue Number | 1 |
| Volume Number | 153 |
| Language | English |
| Publisher | Elsevier BV |
| Publisher Date | 2017-01-01 |
| Access Restriction | Open |
| Subject Keyword | Journal: Journal of Thoracic and Cardiovascular Surgery 3d Printing Operative Simulation Surgical Education Hypertrophic Cardiomyopathy Septal Myectomy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Pulmonary and Respiratory Medicine Surgery Cardiology and Cardiovascular Medicine |