Loading...
Please wait, while we are loading the content...
Similar Documents
Effects of 50 Hz electromagnetic fields on human epidermal stem cells cultured on collagen sponge scaffolds
| Content Provider | Scilit |
|---|---|
| Author | Bai, Wen-Fang Zhang, Ming-Sheng Huang, Hong Zhu, Hong-Xiang Xu, Wei-Cheng |
| Copyright Year | 2012 |
| Description | Journal: International Journal of Radiation Biology Purpose: This study is to investigate the effects of electromagnetic fields (EMF) on proliferation of epidermal stem cells (ESC), which could present a viable clinical option for skin tissue engineering. Materials and methods: The ESC obtained from human foreskin were grafted into type-I three-dimensional collagen sponge scaffolds, and then were exposed with EMF (frequency 50 Hz, intensity 5 mT) for 14 d (30 min per d). Meanwhile, the control group was set under the same conditions without EMF. The effects of EMF on growth and proliferation of ESC were analyzed with staining of hematoxylin and eosin (H\u26E) and 4′,6-diamidino-2-phenylindole (DAPI) under microscope or scanning electron microscope. The data of DAPI staining for 2 d, 7 d, 10 d and 14 d were collected respectively to investigate the cells proliferation. Results: ESC cultured in collagen sponge scaffolds could be steady grown and EMF could promote ESC proliferation compared with control (P \u3c 0.05). Conclusions: EMF could significantly promote proliferation of ESC, which leads to a promising clinical option for skin tissue engineering |
| Related Links | http://www.tandfonline.com/doi/pdf/10.3109/09553002.2012.692496 |
| Ending Page | 530 |
| Page Count | 8 |
| Starting Page | 523 |
| ISSN | 09553002 |
| e-ISSN | 13623095 |
| DOI | 10.3109/09553002.2012.692496 |
| Journal | International Journal of Radiation Biology |
| Issue Number | 7 |
| Volume Number | 88 |
| Language | English |
| Publisher | Informa UK Limited |
| Publisher Date | 2012-04-30 |
| Access Restriction | Open |
| Subject Keyword | Journal: International Journal of Radiation Biology Rehabilitation Cells Cultured Collagen Sponge Sponge Scaffolds Proliferation Cultured in Collagen |
| Content Type | Text |
| Subject | Radiology, Nuclear Medicine and Imaging Radiological and Ultrasound Technology |