Loading...
Please wait, while we are loading the content...
Similar Documents
Discrete Distribution Functions for Log-Normal Moments
| Content Provider | Scilit |
|---|---|
| Author | Bonan-Hamada, Catherine M. Jones, William B. Thron, W. J. Magnus, Arne |
| Copyright Year | 2020 |
| Description | For each pair (a, b) such that − ∞ ≤ a < b ≤ ∞ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072591/cdfacc39-b3df-40a4-a844-eb5c89fe0656/content/eq3.tif"/> , let Φ ( a , b ) https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072591/cdfacc39-b3df-40a4-a844-eb5c89fe0656/content/eq4.tif"/> denote the family of distribution functions (i.e., real-valued, bounded, non-decreasing functions) with infinitely many points of increase on a < t < b. The classical log-normal distribution function φ ( t ) ∈ Φ ( 0 , ∞ ) https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072591/cdfacc39-b3df-40a4-a844-eb5c89fe0656/content/eq5.tif"/> is defined by (1.1) φ ′ ( t ) ≔ q 1 2 2 κ π e − ( ln t 2 κ ) 2 , 0 < t < ∞ , 0 < q = e − 2 κ 2 < 1. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003072591/cdfacc39-b3df-40a4-a844-eb5c89fe0656/content/eq6.tif"/> |
| Related Links | https://content.taylorfrancis.com/books/download?dac=C2006-0-16181-4&isbn=9781003072591&format=googlePreviewPdf |
| DOI | 10.1201/9781003072591-1 |
| Language | English |
| Publisher | Informa UK Limited |
| Publisher Date | 2020-12-11 |
| Access Restriction | Open |
| Subject Keyword | Book Name: Continued Fractions and Orthogonal Functions Functions Euw1 Ap Pe S3 Euw1 Ap |
| Content Type | Text |
| Resource Type | Chapter |