Loading...
Please wait, while we are loading the content...
Similar Documents
Solid dispersions in the form of electrospun core-sheath nanofibers
| Content Provider | Scilit |
|---|---|
| Author | Yu, Deng-Guang Zhu, Li-Min Branford-White, Christopher J. Yang, Jun-He Wang, Xia Li, Ying Qian, Wei |
| Copyright Year | 2011 |
| Description | Journal: International Journal of Nanomedicine |
| Abstract | Solid dispersions in the form of electrospun core-sheath nanofibers Deng-GuangYu1, Li-Min Zhu2, Christopher J Branford-White3, Jun-He Yang1, Xia Wang1, Ying Li1, Wei Qian11School of Materials Science and Engineering, University of Shanghai for Science and Technology; 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People's Republic of China; 3Faculty of Life Sciences, London Metropolitan University, London, United KingdomBackground: The objective of this investigation was to develop a new type of solid dispersion in the form of core-sheath nanofibers using coaxial electrospinning for poorly water-soluble drugs. Different functional ingredients can be placed in various parts of core-sheath nanofibers to improve synergistically the dissolution and permeation properties of encapsulated drugs and to enable drugs to exert their actions.Methods: Using acyclovir as a model drug, polyvinylpyrrolidone as the hydrophilic filament-forming polymer matrix, sodium dodecyl sulfate as a transmembrane enhancer, and sucralose as a sweetener, core-sheath nanofibers were successfully prepared, with the sheath part consisting of polyvinylpyrrolidone, sodium dodecyl sulfate, and sucralose, and the core part composed of polyvinylpyrrolidone and acyclovir.Results: The core-sheath nanofibers had an average diameter of 410 ± 94 nm with a uniform structure and smooth surface. Differential scanning calorimetry and x-ray diffraction results demonstrated that acyclovir, sodium dodecyl sulfate, and sucralose were well distributed in the polyvinylpyrrolidone matrix in an amorphous state due to favoring of second-order interactions. In vitro dissolution and permeation studies showed that the core-sheath nanofiber solid dispersions could rapidly release acyclovir within one minute, with an over six-fold increased permeation rate across the sublingual mucosa compared with that of crude acyclovir particles.Conclusion: The study reported here provides an example of the systematic design, preparation, characterization, and application of a novel type of solid dispersion consisting of multiple components and structural characteristics.Keywords: core-sheath nanofibers, solid dispersion, coaxial electrospinning, poorly water-soluble drug, dissolution, permeation |
| Related Links | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3252675/pdf https://www.dovepress.com/getfile.php?fileID=11608 |
| Ending Page | 3280 |
| Page Count | 10 |
| Starting Page | 3271 |
| e-ISSN | 11782013 |
| DOI | 10.2147/ijn.s27468 |
| Journal | International Journal of Nanomedicine |
| Volume Number | 6 |
| Language | English |
| Publisher | Informa UK Limited |
| Publisher Date | 2011-12-01 |
| Access Restriction | Open |
| Subject Keyword | Journal: International Journal of Nanomedicine Pharmacology and Pharmacy Coaxial Electrospinning Core-sheath Nanofibers Poorly Water-soluble Drug Solid Dispersion |
| Content Type | Text |