Loading...
Please wait, while we are loading the content...
Similar Documents
On a Regularity Theorem for Weak Solutions to Transmission Problems with Internal Lipschitz Boundaries
| Content Provider | Scilit |
|---|---|
| Author | Escauriaza, L. Fabes, E. B. Verchota, G. |
| Copyright Year | 1992 |
| Description | We show that if $u$ is a weak solution to $\operatorname {div} (A\nabla u) = 0$ on an open set $\Omega$ containing a Lipschitz domain $D$, where $A = kI{\chi _D} + I{\chi _{\Omega /D}}(k > 0,k \ne 1)$. Then, the nontangential maximal function of the gradient of $u$ lies in ${L^2}(\partial D)$. |
| Related Links | https://www.ams.org/proc/1992-115-04/S0002-9939-1992-1092919-1/S0002-9939-1992-1092919-1.pdf |
| Ending Page | 1076 |
| Page Count | 8 |
| Starting Page | 1069 |
| ISSN | 00029939 |
| e-ISSN | 10886826 |
| DOI | 10.2307/2159357 |
| Journal | Proceedings of the American Mathematical Society |
| Issue Number | 4 |
| Volume Number | 115 |
| Language | English |
| Publisher | Duke University Press |
| Publisher Date | 1992-08-01 |
| Access Restriction | Open |
| Subject Keyword | Logic Function Regularity Theorem Weak Div Maximal Partial Nontangential |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics |