Loading...
Please wait, while we are loading the content...
Similar Documents
On Some Trigonometric Integrals
| Content Provider | Scilit |
|---|---|
| Author | Fettis, Henry E. |
| Copyright Year | 1980 |
| Description | Expressions are obtained for the integrals \[ I_\lambda ^{(p)} = \int _0^{\pi /2}{\left ( {\frac {{\sin \lambda \theta }}{{\sin \theta }}} \right )^p}d\theta ,\quad J_\lambda ^{(p)} = \int _0^{\pi /2}{\left ( {\frac {{1 - \cos \lambda \theta }}{{\sin \theta }}} \right )^p}d\theta \] for arbitrary real values of "$\lambda$", and $p = 1,2$. |
| Related Links | https://www.ams.org/mcom/1980-35-152/S0025-5718-1980-0583510-1/S0025-5718-1980-0583510-1.pdf |
| Ending Page | 1329 |
| Page Count | 5 |
| Starting Page | 1325 |
| ISSN | 00255718 |
| e-ISSN | 10886842 |
| DOI | 10.2307/2006398 |
| Journal | Mathematics of Computation |
| Issue Number | 152 |
| Volume Number | 35 |
| Language | English |
| Publisher | Duke University Press |
| Publisher Date | 1980-10-01 |
| Access Restriction | Open |
| Subject Keyword | Literary Studies Gamma Function Definite Integrals Integrals Trigonometric Integrals |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Algebra and Number Theory Computational Mathematics |