Loading...
Please wait, while we are loading the content...
The Zeros of the Second Derivative of the Reciprocal of an Entire Function
| Content Provider | Scilit |
|---|---|
| Author | Hellerstein, Simon Williamson, Jack |
| Copyright Year | 1981 |
| Description | Let $f$ be a real entire function of finite order with only real zeros. Assuming that $f'$ has only real zeros, we show that the number of nonreal zeros of $f''$ equals the number of real zeros of $F''$, where $F = 1/f$. From this, we show that $F''$ has only real zeros if and only if $f(z) = \exp (a{z^2} + bz + c)$, $a \geqslant 0$, or $f(z) = {(Az + B)^n}$, $A \ne 0$, $n$ a positive integer. |
| Related Links | https://www.ams.org/tran/1981-263-02/S0002-9947-1981-0594422-9/S0002-9947-1981-0594422-9.pdf |
| Ending Page | 513 |
| Page Count | 13 |
| Starting Page | 501 |
| ISSN | 00029947 |
| e-ISSN | 10886850 |
| DOI | 10.2307/1998364 |
| Journal | Transactions of the American Mathematical Society |
| Issue Number | 2 |
| Volume Number | 263 |
| Language | English |
| Publisher | Duke University Press |
| Publisher Date | 1981-02-01 |
| Access Restriction | Open |
| Subject Keyword | Logic Function Zeros Reciprocal Second Derivative 1/f Exp Integer Geqslant Finite |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics |