Loading...
Please wait, while we are loading the content...
Similar Documents
A Property of Infinitely Differentiable Functions
| Content Provider | Scilit |
|---|---|
| Author | Bang, Ha Huy |
| Copyright Year | 1990 |
| Description | The existence of ${\lim _{n \to \infty }}||{f^{(n)}}||_p^{1/n}$ for an arbitrary function $f(x) \in {C^\infty }({\mathbf {R}})$ such that ${f^{\left ( n \right )}}(x) \in {L^p}({\mathbf {R}}),n = 0,1, \ldots (1 \leq p \leq \infty )$ and the concrete calculation of ${\lim _{n \to \infty }}||{f^{(n)}}||_p^{1/n}$ are shown. |
| Related Links | https://www.ams.org/proc/1990-108-01/S0002-9939-1990-1024259-9/S0002-9939-1990-1024259-9.pdf |
| Ending Page | 76 |
| Page Count | 4 |
| Starting Page | 73 |
| ISSN | 00029939 |
| e-ISSN | 10886826 |
| DOI | 10.2307/2047695 |
| Journal | Proceedings of the American Mathematical Society |
| Issue Number | 1 |
| Volume Number | 108 |
| Language | English |
| Publisher | Duke University Press |
| Publisher Date | 1990-01-01 |
| Access Restriction | Open |
| Subject Keyword | Logic Differentiable Functions Infinitely Differentiable Lim Infty Concrete Ldots Arbitrary |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics |