Loading...
Please wait, while we are loading the content...
Similar Documents
Hilbert's function in a semi-lattice
| Content Provider | Scilit |
|---|---|
| Author | Learner, A. |
| Copyright Year | 1959 |
| Description | Samuel (1) introduced a generalized Hilbert function, written Xq(r, a) and defined for arbitrary ideals a in a local ring Q with maximal ideai m. where q is m-primary.Northcott(2) proved that for a homogeneous ideal ã in a polynomial ring $A[X_{1}$, …, $X_{n}$], where A = Q/q, this is equal to the ordinary Hilbert function χ(r, ã). |
| Related Links | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7BB5C661D387F8748095DB65D2EFC3E0/S0305004100033958a.pdf/div-class-title-hilbert-s-function-in-a-semi-lattice-div.pdf |
| Ending Page | 243 |
| Page Count | 5 |
| Starting Page | 239 |
| ISSN | 03050041 |
| e-ISSN | 14698064 |
| DOI | 10.1017/s0305004100033958 |
| Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
| Issue Number | 3 |
| Volume Number | 55 |
| Language | English |
| Publisher | Cambridge University Press (CUP) |
| Publisher Date | 1959-07-01 |
| Access Restriction | Open |
| Subject Keyword | Mathematical Proceedings of the Cambridge Philosophical Society Condensed Matter Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics |