Loading...
Please wait, while we are loading the content...
On Self-reciprocal functions for Fourier-Bessel integral transforms
| Content Provider | Scilit |
|---|---|
| Author | Ahmad, Afzal Lakshmikanth, V. |
| Copyright Year | 1961 |
| Description | Following Hardy and Titchmarsh(1) a function f(x) is said to be self-reciprocal if it satisfies the Fourier-Bessel integral transform where $J_{p}$(x) is a Bessel function of order P ≥ –½. This integral is denoted by $R_{p}$. The special cases P ½ and P ½, we denote by $R_{s}$ and $R_{c}$, respectively. |
| Related Links | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/4A1BF73859D2C7C10FD65DA97697FF3C/S0305004100035921a.pdf/div-class-title-on-self-reciprocal-functions-for-fourier-bessel-integral-transforms-div.pdf |
| Ending Page | 781 |
| Page Count | 4 |
| Starting Page | 778 |
| ISSN | 03050041 |
| e-ISSN | 14698064 |
| DOI | 10.1017/s0305004100035921 |
| Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
| Issue Number | 4 |
| Volume Number | 57 |
| Language | English |
| Publisher | Cambridge University Press (CUP) |
| Publisher Date | 1961-10-24 |
| Access Restriction | Open |
| Subject Keyword | Mathematical Proceedings of the Cambridge Philosophical Society Integral Transforms |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mathematics |