Loading...
Please wait, while we are loading the content...
Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland
| Content Provider | Scilit |
|---|---|
| Author | Williamson, Andrew G. Banwell, Alison F. Willis, Ian C. Arnold, Neil S. |
| Copyright Year | 2018 |
| Description | Although remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet, most satellite records must trade-off high spatial resolution for high temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes at high spatial resolution (10–30 m) with a frequent revisit time (~ 3 days). We achieve this by mosaicking imagery from the Landsat 8 OLI with imagery from the recently launched Sentinel-2 MSI for a ~ 12 000 km2 area of West Greenland in summer 2016. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence between the two sets of values (R2 = 0.841; RMSE = 0.555 m). This provides us with the methodological basis for automatically calculating lake areas, depths and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid (≤ 4 day) lake-drainage identification. With the dual Sentinel-2-Landsat 8 record, we identify 184 rapidly draining lakes, many more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal resolution, or would be possible with MODIS, due to its omission of small lakes |
| DOI | 10.5194/tc-2018-56 |
| Volume Number | 2018 |
| Language | English |
| Publisher | Copernicus GmbH |
| Publisher Date | 2018-04-20 |
| Access Restriction | Open |
| Subject Keyword | Imaging Science Supraglacial Lakes |
| Content Type | Text |
| Resource Type | Article |