Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Zhang, Jianming Linse, Per Nylander, Tommy Zauscher, Stefan Campbell, Richard A. Rennie, Adrian R. |
| Copyright Year | 2008 |
| Abstract | Neutron reflectivity (NR) measurements have been performed on stimulus-responsive polymer brushes containing N-isopropylacrylamide (NIPAAM) at different temperatures and contrasts using two different brush samples of roughly the same grafting density and layer thickness. The NR data were analyzed using a novel method employing polymer density profiles predicted from lattice mean-field theory augmented with a polymer model to describe polymer solubility that decreases with increasing temperature. The predicted density profiles at the different temperatures were self-consistent with the experimentally observed profiles; hence the experimental data lend credibility to the theory. We found that the brush thickness decreased from 220 to 160 nm and the polymer volume fraction increased from 55 to 75% when increasing temperature from 293 to 328 K. The new evaluation approach involved significantly fewer independent fitting parameters than methods involving layers of uniform densities. Furthermore, the approach can straightforwardly be extended to analyze neutron reflectivity data of grafted, weakly charged polymers that display pH-sensitive behaviour and also to block copolymers and to surfaces with adsorbed polymers. We propose that such accurate model calculations provide a tool to interpret results from NR experiments more effectively and design neutron reflectivity experiments for optimal outcome. |
| Starting Page | 500 |
| Ending Page | 509 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 1744683X |
| Volume Number | 4 |
| Issue Number | 3 |
| Journal | Soft Matter |
| DOI | 10.1039/b714911e |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Polymer Mean field theory Grafting Crystal structure |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|