Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Olsen, Bradley D. Glassman, Matthew J. |
| Copyright Year | 2013 |
| Abstract | A strategy for responsively toughening an injectable protein hydrogel has been implemented by incorporating an associative protein as the midblock in triblock copolymers with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) endblocks, producing materials with a low yield stress necessary for injectability and durability required for load-bearing applications post-injection. Responsive reinforcement triggered by PNIPAM association leads to significant increases in the gel's elastic modulus as well as its resistance to creep. The performance of these materials is a strong function of molecular design, with certain formulations reaching elastic moduli of up to 130 kPa, effectively reinforced by a factor of 14 over their low temperature moduli, and having stress relaxation times increased by up to a factor of 50. The nanostructural origins of these thermoresponsive enhancements were explored, demonstrating that large micellar cores, high PNIPAM volume fractions, and high densities of associating groups in the protein corona lead to the greatest reinforcement of the gel's elastic modulus. Gels with the largest micelles and the highest packing fractions also had the longest relaxation times in the reinforced state. These combined structure and mechanics studies reveal that control of both the micellar and protein networks is critical for making high performance gels relevant for biomedical applications. |
| Starting Page | 6814 |
| Ending Page | 6823 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 1744683X |
| Volume Number | 9 |
| Issue Number | 29 |
| Journal | Soft Matter |
| DOI | 10.1039/c3sm00102d |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | PNIPAM Elastic modulus Yield (engineering) Poly(N-isopropylacrylamide) Micelle Protein Pascal (unit) Gel Dislocation creep |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|