Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Zhang, Zhidong Or, Siu Wing Zhang, Yajing |
| Copyright Year | 2011 |
| Abstract | Three-dimensional (3D) hierarchical cobalt (Co) hyperbranches are synthesized by a sodium tartrate-assisted hydrothermal self-assembly route. The route includes the fabrication of the Co hyperbranches in a solution of cobalt chloride (CoCl2·6H2O) and sodium hydroxide (NaOH) at 110 °C for 24 h using sodium tartrate (Na2C4H4O6·2H2O) as the complex reagent and sodium hypophosphite (NaH2PO2·H2O) as the reducing agent. Each Co hyperbranch is 50–100 μm in length and consists of a main branch with several secondary branches and leaves. The adjustments of the molar ratio of Na2C4H4O6 to CoCl2 and the concentration of NaOH in the solution lead to the formation of the Co products with different morphologies. A possible growth mechanism for the Co hyperbranches is proposed based on the characterization results of X-ray diffraction and scanning electron microscopy. The magnetic hysteresis loops at room temperature of the resulting Co products with different morphologies show ferromagnetic characteristics with high dependence on their sizes and morphologies. An increased coercivity (Hc) of 231 Oe and a reduced saturation magnetization (Ms) of 152 emu/g are observed in the Co hyperbranches compared to their bulk counterpart. This relatively simple, efficient, and morphologically controllable route can be applied to the synthesis of complex 3D micro/nanoarchitectures of other materials. |
| Starting Page | 1287 |
| Ending Page | 1293 |
| Page Count | 7 |
| File Format | HTM / HTML PDF |
| ISSN | 20462069 |
| Volume Number | 1 |
| Issue Number | 7 |
| Journal | RSC Advances |
| DOI | 10.1039/c1ra00387a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Sodium tartrate Redox Concentration Cobalt Reagent Water of crystallization Scanning electron microscope Three-dimensional space Sodium hydroxide Sodium hypophosphite X-ray crystallography Self-assembly Hydrothermal circulation Saturation (magnetic) Micrometre Ferromagnetism Cobalt(II) chloride Correlation and dependence Hysteresis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Chemical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|