Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Borodin, Sergiy Valtiner, Markus Grundmeier, Guido |
| Copyright Year | 2007 |
| Abstract | Two different approaches under ambient conditions were developed for the preparation of clean, non-reconstructed, single crystalline ZnO(0001)–Zn surfaces. The surface preparation by a wet chemical etching procedure was compared with the same treatment in combination with a subsequent heat treatment in humidified oxygen atmosphere. Depending on the preparation technique, atomically flat terraces with a width of 100 nm to several micrometers were observed using an atomic force microscope (AFM). The obtained surface structures were further characterized by means of angle resolved X-ray photoelectron spectroscopy (AR-XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) measurements. Based on these results it is shown that the obtained surfaces are, in contrast to surfaces prepared under UHV conditions, stabilised by the adsorption of a monolayer of hydroxides. The important role of H2O during the heat treatment is pointed out by comparing the results of the same heat treatment in the absence of water. H2O turned out to play an important role in the reorganization process of the surface at elevated temperatures, thereby yielding extremely large atomically flat terraces. The terminating edges of these terraces were found to include 120° and 60° angles, thus perfectly reflecting the hexagonal surface structure. |
| Starting Page | 2406 |
| Ending Page | 2412 |
| Page Count | 7 |
| File Format | HTM / HTML PDF |
| ISSN | 14639076 |
| Volume Number | 9 |
| Issue Number | 19 |
| Journal | Physical Chemistry Chemical Physics |
| DOI | 10.1039/b617600c |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Chemical milling Spectroscopy Oxygen Properties of water Electron diffraction Ion Auger Photoemission spectroscopy Time-of-flight mass spectrometry Atomic-force microscopy Adsorption Low-energy electron diffraction Electron spectroscopy Auger electron spectroscopy X-ray photoelectron spectroscopy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|