Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Gibson, Gregory Lin, Wen-Feng Wang, Ziyun Hardacre, Christopher |
| Copyright Year | 2017 |
| Abstract | The H2O splitting mechanism is a very attractive alternative used in electrochemistry for the formation of O3. The most efficient catalysts employed for this reaction at room temperature are SnO2-based, in particular the Ni/Sb–SnO2 catalyst. In order to investigate the H2O splitting mechanism density functional theory (DFT) was performed on a Ni/Sb–SnO2 surface with oxygen vacancies. By calculating different SnO2 facets, the (110) facet was deemed most stable, and further doped with Sb and Ni. On this surface, the H2O splitting mechanism was modelled paying particular attention to the final two steps, the formation of O2 and O3. Previous studies on β-PbO2 have shown that the final step in the reaction (the formation of O3) occurs via an Eley–Rideal style interaction where surface O2 desorbs before attacking surface O to form O3. It is revealed that for Ni/Sb–SnO2, although the overall reaction is the same the surface mechanism is different. The formation of O3 is found to occur through a Langmuir–Hinshelwood mechanism as opposed to the Eley–Rideal mechanism. In addition to this the relevant adsorption energies (Eads), Gibb’s free energy (ΔGrxn) and activation barriers (Eact) for the final two steps modelled in the gas phase have been shown, providing the basis for a tool to develop new materials with higher current efficiencies. |
| Starting Page | 3800 |
| Ending Page | 3806 |
| Page Count | 7 |
| File Format | HTM / HTML PDF |
| ISSN | 14639076 |
| Volume Number | 19 |
| Issue Number | 5 |
| Journal | Physical Chemistry Chemical Physics |
| DOI | 10.1039/c6cp06906a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Oxygen Gibbs free energy Gibb Properties of water Adsorption Langmuir Electrochemistry Density functional theory Reactions on surfaces Eads Eley Hinshelwood |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|