Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Dibble, Theodore S. Jiao, Yuge |
| Copyright Year | 2017 |
| Abstract | We use computational chemistry to determine the rate constants and product yields for the reactions of BrHg˙ with the atmospherically abundant radicals NO2 and HOO. The reactants, products, and well-defined transition states are characterized using CCSD(T) with large basis sets. The potential energy profiles for the barrierless addition of HOO and NO2 to BrHg˙ are characterized using CASPT2 and RHF-CCSDT, and the rate constants are computed as a function of temperature and pressure using variational transition state theory and master equation simulations. The calculated rate constant for the addition of NO2 to BrHg˙ is larger than that for the addition of HOO by a factor of up to two under atmospheric conditions. For the reaction of HOO with BrHg˙ the addition reaction entirely dominates competing HOO + BrHg˙ reaction channels. The addition of NO2 to BrHg˙ initially produces both BrHgNO2 and BrHgONO, but after a few seconds under atmospheric conditions the sole product is syn-BrHgONO. A previously unsuspected reaction channel for BrHg˙ + NO2 competes with the addition to yield Hg + BrNO2. This reaction reduces the mercury oxidation state in BrHg˙ from Hg(I) to Hg(0) and slows the atmospheric oxidation of Hg(0). While the rate constant for this reduction channel is not well-constrained by the present calculations, it may be as much as 18% as large as the oxidation channel under some atmospheric conditions. As no experimental kinetic or product yield data are available for the reactions studied here, this work will provide guidance for atmospheric modelers and experimental kineticists. |
| Starting Page | 1826 |
| Ending Page | 1838 |
| Page Count | 13 |
| File Format | HTM / HTML PDF |
| ISSN | 14639076 |
| Volume Number | 19 |
| Issue Number | 3 |
| Journal | Physical Chemistry Chemical Physics |
| DOI | 10.1039/c6cp06276h |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Potential energy surface Computational chemistry Master equation Mercury-in-glass thermometer Addition reaction |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|