Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Shi, Chunsheng Wang, Dan Wang, Zhiyuan Liu, Yanguo Qi, Xiwei Bao, Shuo He, Chunnian Zhao, Naiqin Luo, Shaohua |
| Copyright Year | 2017 |
| Abstract | The structural damage induced by huge volume change during lithiation/delithiation results in poor cycle stability of tin-based anode materials, which becomes the major obstacle to their practical application. In this work, we fabricated three-dimensional (3D) porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles (Ni3Sn2 and Ni3Sn4; 10–30 nm) by a freeze-drying method with self-assembled NaCl as a template followed by annealing. Both Ni3Sn2/C and Ni3Sn4/C exhibit excellent electrochemical performance as anode materials for lithium-ion batteries. In particular, the Ni3Sn4/C nanocomposites exhibit superior rate capability (735, 661, 622, 577, 496, and 377 mA h g−1 at 0.1, 0.2, 0.5, 1, 2, and 5 A g−1, respectively) and excellent cycling stability (568 mA h g−1 at 0.5 A g−1 for the second cycle and gradually increased to 732 mA h g−1 after 200 cycles). The superior electrochemical performance is attributed to the synergetic effect of Ni–Sn alloy nanoparticles and 3D porous bowl-shaped carbon networks. The uniformly embedded Ni–Sn alloy nanoparticles can effectively alleviate the absolute stress/strain and shorten the Li+ diffusion path, and Ni in the Ni–Sn alloy acts as a buffer to suppress the volume expansion. Moreover, the 3D bowl-shaped carbon networks with high conductivity can provide abundant space for volume expansion, suppress the agglomeration of Ni–Sn nanoparticles, ensure the structural integrity, and facilitate lithium-ion diffusion as well as electron transportation. |
| Starting Page | 393 |
| Ending Page | 402 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 11440546 |
| Volume Number | 41 |
| Issue Number | 1 |
| Journal | New Journal of Chemistry |
| DOI | 10.1039/c6nj02458k |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Lithium-ion battery Anode Electrochemistry Diffusion Carbon Freeze-drying Three-dimensional space Nucleic acid thermodynamics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|