Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Manthiram, Arumugam Ferreira, Paulo J. Wang, Chih-Chieh Jarvis, Karalee A. |
| Copyright Year | 2014 |
| Abstract | Lithium-rich layered Li[Li1/3−2x/3Mn2/3−x/3Nix]O2 (0 < x ≤ 1/2) oxide cathodes show promise as a potential candidate for Li-ion batteries due to their high capacity. However, the intricacies of the role of composition with increasing excess Li on the degree of oxygen loss during the first charge and the discharge capacity in subsequent cycles are not fully understood. With an aim to develop a better fundamental understanding, we present here an in-depth investigation of the Li[Li1/3−2x/3Mn2/3−x/3Nix]O2 (0 < x ≤ 1/2) series with a range of different excess lithium contents prepared by two different synthesis methods. The oxygen loss from the lattice during the first charge and the discharge capacity in subsequent cycles increase with increasing lithium content. In-depth analysis with a combination of X-ray diffraction, scanning electron microscopy (SEM), aberration-corrected scanning transmission electron microscopy (STEM), diffraction-STEM (D-STEM), and energy dispersive X-ray spectroscopy (EDS) reveals that the samples transition from an Rm structure to a C2/m structure with increasing lithium content and decreasing nickel to manganese ratio, for both the synthesis methods, indicating that the maximum oxygen loss and discharge capacity are achieved with a single C2/m phase. We further show that within a single particle, the cation layers of these materials can order on different {111} planes in the basic NaCl structure. |
| Starting Page | 1353 |
| Ending Page | 1362 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 20507488 |
| Volume Number | 2 |
| Issue Number | 5 |
| Journal | Journal of Materials Chemistry A |
| DOI | 10.1039/c3ta12440a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Li Oxygen Lithium Crystal structure X-ray crystallography Scanning electron microscope Scanning transmission electron microscopy Energy-dispersive X-ray spectroscopy Nickel Manganese Ion |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Renewable Energy, Sustainability and the Environment Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|