Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Guo, Wenbin Luo, Dong Yang, Li Hirano, Shin-ichi Fang, Shaohua Shi, Pei |
| Copyright Year | 2017 |
| Abstract | Assembled microspherical cathodes have attracted great attention thanks to their high tap density, good rate capability and cycling stability. However, for layered Li-rich transition-metal oxides (LROs), the preparation of uniformly assembled microspheres still faces many challenges due to harsh synthetic conditions and the nature of multiple metal elements. In this work, Li1.17Mn0.50Ni0.16Co0.17O2 assembled microspheres have been prepared by a new route tactfully combining a solvothermal process and a molten-salt method. The use of a solvothermal process is helpful for the preparation of precursors with assembled microspherical morphology, and the addition of complex salts (NaCl and KCl), can increase the uniformity of cation distribution. The product obtained at 800 °C delivers the best electrochemical performances among all samples. At a current density of 300 mA g−1, its initial discharge capacity is larger than 228 mA h g−1, corresponding to a capacity retention ratio of 86.8% after 200 cycles. Even if the current density increases to 2000 mA g−1, its discharge capacity is still as large as 156 mA h g−1. What's more, we discover the moving rate of Li-ions during the sintering process will affect the uniformity of Li2MnO3-like and LiMO2 components in LRO assembled microspheres. This discovery is helpful for the preparation of LRO assembled microspheres with excellent electrochemical performances. |
| Starting Page | 650 |
| Ending Page | 658 |
| Page Count | 9 |
| File Format | HTM / HTML PDF |
| ISSN | 20521553 |
| Volume Number | 4 |
| Issue Number | 4 |
| Journal | Inorganic Chemistry Frontiers |
| DOI | 10.1039/c6qi00571c |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Ion Electrochemistry Electric current Retention ratio Sintering Lunar Reconnaissance Orbiter |
| Content Type | Text |
| Resource Type | Article |
| Subject | Inorganic Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|