Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Li, Weiqiang Zhao, Huijun Ding, Hualin Zhang, Yunxia Ding, Qianqian Zhang, Haimin Wang, Guozhong Ge, Xiao Zhang, Hao |
| Copyright Year | 2016 |
| Abstract | Ideally, a superior catalyst should possess high speed, selectivity and stability. However, it is difficult to holistically achieve high speed, selectivity and stability catalysis with modest configured catalyst structures. This work reports a new pre-shell/post-core approach combined with a laser ablation treatment strategy to fabricate a sophisticated catalyst architecture configured with a hollow mesoporous SiO2 (hm-SiO2) sphere shell and multiple encapsulated Ag nanoparticle (NP) yolks (Ag@hm-SiO2). Each Ag@hm-SiO2 nanosphere encapsulates 5–10 Ag NP yolks with an average size of 20 nm, in which the content of silver is about 3.6 wt% based on the inductively coupled plasma measurement. To further enhance the catalytic activity, a laser ablation treatment strategy is innovatively utilized to reduce the sizes of the encapsulated Ag NP yolks and increase their numbers. The catalytic reduction of 4-nitrophenol (4-NP) is used to evaluate the catalytic performance of the fabricated Ag@hm-SiO2 catalyst architecture before and after laser ablation treatment. The laser ablation treated Ag@hm-SiO2 nanospheres demonstrate a three-fold increased catalytic activity towards 4-NP reduction with excellent stability. Such superior catalytic performance could be attributed to the unique structural features of the Ag@hm-SiO2 architecture, in which the mesopore shell provides not only readily accessible pathways for fast transport of reactants to the encapsulated Ag NPs but also an effective protective shield for the encapsulated Ag NPs. |
| Starting Page | 663 |
| Ending Page | 670 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 20521553 |
| Volume Number | 3 |
| Issue Number | 5 |
| Journal | Inorganic Chemistry Frontiers |
| DOI | 10.1039/c6qi00002a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | NP Ag NP Laser ablation Mesoporous material Nanoparticle Inductively coupled plasma 4-Nitrophenol |
| Content Type | Text |
| Resource Type | Article |
| Subject | Inorganic Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|