Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Huang, Hongqin Xue, Jingzhe Zan, Guangtao Zhang, Xiaochen Zhang, Yahui Deng, Baolin Wu, Qingsheng |
| Copyright Year | 2016 |
| Abstract | The pursuit of food safety and environmental protection has encouraged the development of new antifungal agents to replace traditional fungicides. Here we present an integrated green nanotechnology using inorganic materials, Ag3PO4 micro/nano-crystals, which could enhance the efficiency of fungicide sodium o-phenyl phenolate (SOPP) but without its residue remaining. The experiments demonstrate that the micro/nano Ag3PO4 was effective in inhibiting fungal hyphae growth against Phytophthora capsici and Botrytis cinerea. After being combined with Ag3PO4 micro/nanocrystals, the antifungal activities of fungicides SOPP and cyproconazole were enhanced. More importantly, it was found that over 90% of the SOPP was decomposed by the Ag3PO4 at a dose of 1.6 g L−1 under simulated sunlight irradiation within 2 h, exhibiting a much better photocatalytic activity than ZnO nanoparticles (NPs). These achievements demonstrate that this green nanotechnology could reduce fungicide usage without compromising on pathogen control and provide a residue-free effect under natural environmental conditions. Furthermore, it was found that the antifungal activity of Ag3PO4 was not due to the production of ROS but strongly related to interaction with fungal cells and the release of Ag+ ions. The mechanism for the synergistic enhanced antifungal effect was speculated from three possible aspects: (a) Ag3PO4 micro/nano-crystals and Ag+ ions promoting the penetration of OPP ions into the cell interior; (b) formation of a Ag3PO4–SOPP composite; and (c) multiple modes of antifungal action of the Ag3PO4–SOPP system. |
| Starting Page | 354 |
| Ending Page | 364 |
| Page Count | 11 |
| File Format | HTM / HTML PDF |
| ISSN | 20521553 |
| Volume Number | 3 |
| Issue Number | 3 |
| Journal | Inorganic Chemistry Frontiers |
| DOI | 10.1039/c5qi00186b |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | SOPP Food safety Fungicide Nanotechnology Sodium Phytophthora capsici Botrytis cinerea Pathogen Reactive oxygen species |
| Content Type | Text |
| Resource Type | Article |
| Subject | Inorganic Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|