Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Kim, Hyunsoo Park, Hui Joon Guo, L. Jay Lee, Jae Yong Lee, Taehwa |
| Copyright Year | 2013 |
| Abstract | In polymer photovoltaic (PV) cell, it is desirable to use a relatively thick polymer semiconductor film in order to maximize the light absorption, and to achieve better controllability and reproducibility of the film in manufacturing processes. However, the low fill factor due to restricted charge transport and extraction at large film thickness serially limits the performance of the polymer PV cell. In this work, we investigate the factors that can impact the device performances as film thickness is increased. We also introduce ways to help alleviate these problems in thick BHJ PVs. Our measurement results, based on the space-charge limited-current (SCLC) model and the photo-induced carrier extraction by linearly increasing voltage (photo-CELIV) method, show that the thicker BHJ devices have relatively low electron mobility compared with hole mobility, which directly correlates with high contact resistance at the top cathode interface that prevents efficient transport of photo-generated electrons. Specifically, we found that the newly introduced ESSENCIAL fabrication process helps improve the blend donor and acceptor domain morphologies; and adding an ultrathin C60 layer at the cathode interface helps improve the surface morphology and significantly reduce the contact resistance. The effects of the added thin C60 layer on PV cells were further studied by examining several important diode characteristics. Our results proved that this layer not only decreases the contact resistance at the cathode but also improves the hole-blocking, thereby providing significantly suppressed recombination at the cathode interface. Consequently, the fabricated PV devices optimized in morphology and interface show significantly improved internal quantum efficiency (IQE) as compared with the thermally annealed conventional PV cells, leading to 5.11% PCE from a P3HT:PCBM blend system. The modifications to the fabrication of BHJ PV cells described in this work allow for photoactive layers to be hundreds of nanometers thick for efficient light absorption and better controllability. |
| Starting Page | 2203 |
| Ending Page | 2210 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 17545692 |
| Volume Number | 6 |
| Issue Number | 7 |
| Journal | Energy & Environmental Science |
| DOI | 10.1039/c3ee24410e |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | SCLC Polymer Solar cell Semiconductor Southern Christian Leadership Conference Electron mobility Electrode Diode Carrier generation and recombination Quantum tunnelling Polythiophene Phenyl-C61-butyric acid methyl ester |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Chemistry Pollution Renewable Energy, Sustainability and the Environment Nuclear Energy and Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|