Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Hess, Franziska Over, Herbert |
| Copyright Year | 2014 |
| Abstract | In this perspective, we focus on the catalyzed oxidation of CO and HCl over the model catalyst RuO2(110) and how the kinetics of these reactions can be modeled by kinetic Monte Carlo (kMC) simulations. Assuming the reaction mechanism is known, the critical parameters entering the kMC simulations include the activation and adsorption energies as well as interaction energies between the adsorbed species and the diffusion barriers. This input parameter set can either be determined by using dedicated coadsorption experiments or by calculations from electronic structure theory. A critical comparison of kMC results with on-line kinetic and in situ spectroscopic experiments enables the assessment of a proposed reaction mechanism. Transient rather than steady state experiments are of particular importance for this purpose. Only the inclusion of lateral interactions among the reaction intermediates allows for the determination of an apparent activation energy which is consistent with the experiment. For the case of CO oxidation over RuO2(110), we compare the results of kMC with those based on the mean field approach, the standard method of microkinetic modeling. It turns out that under realistic reaction conditions for the CO oxidation over RuO2(110) both methods can equally well describe experimental kinetic data if lateral repulsion is included in the model. However, if one-dimensional confinement is encountered such as with the HCl oxidation reaction over RuO2(110), then kMC is the preferred method for microkinetic modeling. |
| Starting Page | 583 |
| Ending Page | 598 |
| Page Count | 16 |
| File Format | HTM / HTML PDF |
| ISSN | 20444753 |
| Volume Number | 4 |
| Issue Number | 3 |
| Journal | Catalysis Science & Technology |
| DOI | 10.1039/c3cy00833a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Monte Carlo method Monte Carlo Adsorption Reaction mechanism Hydrogen chloride Diffusion Activation energy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|