Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Gascon, Jorge Rodríguez-Ramos, Inmaculada Kapteijn, Freek Sun, Xiaohui Eslava, José L. |
| Copyright Year | 2017 |
| Abstract | The effect of ruthenium particle size on Fischer–Tropsch synthesis (FTS) has been studied at 513 K, H2/CO = 2 and 15 bar. Supported Ru catalysts with particle sizes ranging from 1.7 to 12 nm were prepared by using different Ru loadings and two different high surface area graphite (HSAG) supports to minimize the metal–support interaction. In addition, the effect of promotion with Cs is also evaluated. Microcalorimetric characterization during CO adsorption and XPS reveal a clear interaction between Ru and Cs. The FTS with Ru-based catalysts is, independent of the presence of promoter, highly structure-sensitive when the Ru particle size is under 7 nm. In this range the turnover frequency (TOF) for CO conversion increases with particle size, reaching a near constant value for Ru particles larger than 7 nm. Cs promoted catalysts display lower TOF values than the corresponding unpromoted samples. This somewhat reduced activity is attributed to the stronger CO adsorption on Cs promoted catalysts, as demonstrated by CO adsorption microcalorimetry. Product selectivity depends also on Ru particle size. Selectivity to C5+ hydrocarbons increases with increasing Ru particle size. For Cs-promoted catalysts, the olefin to paraffin ratio in the C2–C4 hydrocarbons range is independent of the Ru particle size, whereas it decreases for the unpromoted catalysts, showing the prevailing influence of the promoter. |
| Starting Page | 1235 |
| Ending Page | 1244 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 20444753 |
| Volume Number | 7 |
| Issue Number | 5 |
| Journal | Catalysis Science & Technology |
| DOI | 10.1039/c6cy02535h |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Cs Ruthenium Alkene Adsorption Fischer Graphite Alkane Product selectivity Fischer\u2013Tropsch process |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|