Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Liu, Haiqing Liu, Di Wen, Ming Tian, Yang Zhang, Feng |
| Copyright Year | 2010 |
| Abstract | Amorphous ternary FeNiPt nanomaterials with tunable length are reported for constructing the electrochemical sensing platform, in which hydrogen peroxide (H2O2) is selected as a model target. It is found that amorphous FeNiPt nanostructures, in particular, the FeNiPt nanorods with large axial-ratio (FeNiPt-NRL) exhibit the enhanced electrocatalytic activity towards both the oxidation and reduction of H2O2. Meanwhile, the comparable corrosion potential Ecorr and lower corrosion current Icorr are observed at GC electrodes modified with FeNiPt-NRL, revealing the good stability of the FeNiPt-NRL surface. On the basis of these results, H2O2 is cathodically determined at glassy carbon (GC) electrodes with FeNiPt-NRL with relatively high selectivity at the appropriate potential of 0 V vs. Ag|AgCl. On the other hand, the sensitivity of the anodic H2O2 detection at the same electrode is achieved to be 2.45 mA cm−2 mM−1, which is 4-fold larger than that of the cathodic detection and those Pt nanoparticles-based H2O2 determination, and the detection limit is also developed to 40 nM. The dynamic linear range is broadened from 100 nM to 30 mM, which is wider than those H2O2 detection based on Pt nanoparticles and binary Pt alloys. In addition, electrochemical results show the high stability and good reproducibility for the present H2O2 sensor. The striking analytical performance combined with the intrinsic properties of amorphous FeNiPt nanomaterials provides a promising technique for the development of non-enzyme H2O2 and other molecule sensors with high sensitivity, broad dynamic linear range, long stability, and good reproducibility. |
| Starting Page | 143 |
| Ending Page | 148 |
| Page Count | 6 |
| File Format | HTM / HTML PDF |
| ISSN | 17599660 |
| Volume Number | 2 |
| Issue Number | 2 |
| Journal | Analytical Methods |
| DOI | 10.1039/b9ay00209j |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Hydrogen peroxide Electrode Corrosion Electrochemistry Nanomaterials Carbon |
| Content Type | Text |
| Resource Type | Article |
| Subject | Analytical Chemistry Engineering Chemical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|