Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Xiao, Qi Xiao, Chong |
| Copyright Year | 2009 |
| Abstract | Bifunctional magnetic–fluorescent composite nanoparticles (MPQDs) with Fe3O4MPs and Mn:ZnS/ZnS core–shell quantum dots (QDs) encapsulated in silica spheres were synthesized through reverse microemulsion method and characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, vibration sample magnetometer, and photoluminescence (PL) spectra. Our strategy could offer the following features: (1) the formation of Mn:ZnS/ZnS core/shell QDs resulted in enhancement of the PL intensity with respect to that of bare Mn:ZnS nanocrystals due to the effective elimination of the surface defects; (2) the magnetic nanoparticles were coated with silica, in order to reduce any detrimental effects on the QD PL by the magnetic cores; and (3) both Fe3O4MPs and Mn:ZnS/ZnS core–shell QDs were encapsulated in silica spheres, and the obtained MPQDs became water soluble. The experimental conditions for the silica coating on the surface of Fe3O4nanoparticles, such as the ratio of water to surfactant (R), the amount of ammonia, and the amount of tetraethoxysilane, on the photoluminescence properties of MPQDs were studied. It was found that the silica coating on the surface of Fe3O4could effectively suppress the interaction between the Fe3O4and the QDs under the most optimal parameters, and the emission intensity of MPQDs showed a maximum. The bifunctional MPQDs prepared under the most optimal parameters have a typical diameter of 35 nm and a saturation magnetization of 4.35 emu/g at room temperature and exhibit strong photoluminescence intensity. |
| Related Links | http://dx.doi.org/10.1007/s11671-009-9356-0 |
| Ending Page | 1084 |
| Page Count | 7 |
| Starting Page | 1078 |
| File Format | |
| ISSN | 19317573 |
| e-ISSN | 1556276X |
| Journal | Nanoscale Research Letters |
| Issue Number | 9 |
| Volume Number | 4 |
| Language | English |
| Publisher | Springer |
| Publisher Date | 2009-09-01 |
| Access Restriction | Open |
| Rights Holder | Springer |
| Subject Keyword | Materials Science(all) Condensed Matter Physics Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|