Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Wu, Xiongwu Brooks, Bernard R. |
| Copyright Year | 2009 |
| Abstract | Isotropic periodic sum (IPS) is a method to calculate long-range interactions based on homogeneity of simulation systems. Long-range interactions are represented by interactions with isotropic periodic images of a defined local region and can be reduced to short ranged IPS potentials. The original electrostatic three-dimensional (3D)-IPS potential was derived based on a nonpolar homogeneous approximation and its application is limited to nonpolar or weak polar systems. This work derived a polar electrostatic 3D-IPS potential based on polar interactions. For the convenience of application, polynomial functions with rationalized coefficients are proposed for electrostatic and Lennard-Jones 3D-IPS potentials. Model systems of various polarities and several commonly used solvent systems are simulated to evaluate the 3D-IPS potentials. It is demonstrated that for polar systems the polar electrostatic 3D-IPS potential has much improved accuracy as compared to the nonpolar 3D-IPS potential. For homogeneous systems, the polar electrostatic 3D-IPS potential with a local region radius or cutoff distance of as small as 10 Å can satisfactorily reproduce energetic, structural, and dynamic properties from the particle-meshed-Ewald method. For both homogeneous and heterogeneous systems, the 3D-IPS∕discrete fast Fourier transform method using either the nonpolar or the polar electrostatic 3D-IPS potentials results in very similar simulation results. |
| Related Links | http://dx.doi.org/10.1063/1.3160730 |
| Starting Page | 24107 |
| File Format | |
| ISSN | 00219606 |
| e-ISSN | 10897690 |
| Journal | The Journal of Chemical Physics |
| Issue Number | 2 |
| Volume Number | 131 |
| Language | English |
| Publisher | American Institute of Physics |
| Publisher Date | 2009-01-01 |
| Access Restriction | Open |
| Rights Holder | American Institute of Physics |
| Subject Keyword | Physical and Theoretical Chemistry Physics and Astronomy(all) Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Medicine Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|