Loading...
Please wait, while we are loading the content...
Similar Documents
A graph clustering algorithm based on a clustering coefficient for weighted graphs
| Content Provider | Paperity |
|---|---|
| Author | Nascimento, Mariá C. V. Carvalho, André C. P. L. F. |
| Abstract | Graph clustering is an important issue for several applications associated with data analysis in graphs. However, the discovery of groups of highly connected nodes that can represent clusters is not an easy task. Many assumptions like the number of clusters and if the clusters are or not balanced, may need to be made before the application of a clustering algorithm. Moreover, without previous information regarding data label, there is no guarantee that the partition found by a clustering algorithm automatically extracts the relevant information present in the data. This paper proposes a new graph clustering algorithm that automatically defines the number of clusters based on a clustering tendency connectivity-based validation measure, also proposed in the paper. According to the computational results, the new algorithm is able to efficiently find graph clustering partitions for complete graphs. |
| Starting Page | 19 |
| Ending Page | 29 |
| File Format | HTM / HTML |
| ISSN | 01046500 |
| DOI | 10.1007/s13173-010-0027-x |
| Issue Number | 1 |
| Journal | Journal of the Brazilian Computer Society |
| Volume Number | 17 |
| e-ISSN | 16784804 |
| Language | English |
| Publisher | SpringerOpen |
| Publisher Date | 2011-03-01 |
| Access Restriction | Open |
| Subject Keyword | Clustering coefficient Graph clustering Combinatorial optimization |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science |