Loading...
Please wait, while we are loading the content...
Similar Documents
X-ray variability patterns and radio/X-ray correlations in Cyg X-1
| Content Provider | Paperity |
|---|---|
| Author | Zdziarski, Andrzej A. Lubiński, Piotr Skinner, Gerald K. Pooley, Guy G. |
| Abstract | We have studied the X-ray variability patterns and correlations of the radio and X-ray fluxes in all spectral states of Cyg X-1 using X-ray data from the All-Sky Monitor onboard the Rossi X-ray Timing Explorer, Burst And Transient Source Experiment onboard the Compton Gamma Ray Observatory and the Burst Alert Telescope onboard Swift. In the hard state, the dominant spectral variability is a changing of normalization with a fixed spectral shape, while in the intermediate state, the slope changes, with a pivot point around 10 keV. In the soft state, the low-energy X-ray emission dominates the bolometric flux which is only loosely correlated with the high-energy emission. In black hole binaries in the hard state, the radio flux is generally found to depend on a power of the X-ray flux, FR�FpX. We confirm this for Cyg X-1. Our new finding is that this correlation extends to the intermediate and soft states, provided the broad-band X-ray flux in the Comptonization part of the spectrum (excluding the blackbody component) is considered instead of a narrow-band medium-energy X-ray flux. We find an index p≃ 1.7 ± 0.1 for 15-GHz radio emission, decreasing to p≃ 1.5 ± 0.1 at 2.25 GHz. We conclude that the higher value at 15 GHz is due to the effect of free–free absorption in the wind from the companion. The intrinsic correlation index remains uncertain. However, based on a theoretical model of the wind in Cyg X-1, it may to be close to ≃1.3, which, in the framework of accretion/jet models, would imply that the accretion flow in Cyg X-1 is radiatively efficient. The correlation with the flux due to Comptonization emission indicates that the radio jet is launched by the hot electrons in the accretion flow in all spectral states of Cyg X-1. On the other hand, we are able to rule out the X-ray jet model. Finally, we find that the index of the correlation, when measured using the X-ray flux in a narrow energy band, strongly depends on the band chosen and is, in general, different from that for either the bolometric flux or the flux in the hot-electron emission. |
| Starting Page | 1324 |
| Ending Page | 1339 |
| File Format | HTM / HTML |
| ISSN | 00358711 |
| DOI | 10.1111/j.1365-2966.2011.19127.x |
| Issue Number | 2 |
| Journal | Monthly Notices of the Royal Astronomical Society |
| Volume Number | 416 |
| e-ISSN | 13652966 |
| Language | English |
| Publisher | Oxford University Press |
| Publisher Date | 2011-09-11 |
| Access Restriction | Open |
| Subject Keyword | Stars: individual: cyg x-1 Radio continuum: stars X-rays: stars X-rays: binaries accretion discs Accretion Stars: individual: hde 226868 |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |