Loading...
Please wait, while we are loading the content...
Similar Documents
Transition Metal Catalyzed Oxidative Cleavage of C-O Bond
| Content Provider | University of North Texas |
|---|---|
| Author | Wang, Jiaqi |
| Description | The focus of this thesis is on C-O bonds activation by transition metal atoms. Lignin is a potential alternative energy resource, but currently is an underused biomass species because of its highly branched structure. To aid in better understanding this species, the oxidative cleavage of the Cβ-O bond in an archetypal arylglycerol β-aryl ether (β–O–4 Linkage) model compound of lignin with late 3d, 4d, and 5d metals was investigated. Methoxyethane was utilized as a model molecule to study the activation of the C-O bond. Binding enthalpies (ΔHb), enthalpy formations (ΔH) and activation enthalpies (ΔH‡) have been studied at 298K to learn the energetic properties in the C-O bond cleavage in methoxyethane. Density functional theory (DFT) has become a common choice for the transition metal containing systems. It is important to select suitable functionals for the target reactions, especially for systems with degeneracies that lead to static correlation effects. A set of 26 density functionals including eight GGA, six meta-GGA, six hybrid-GGA, and six hybrid-meta-GGA were applied in order to investigate the performance of different types of density functionals for transition metal catalyzed C-O bond cleavage. A CR-CCSD(T)/aug-cc-pVTZ was used to calibrate the performance of different density functionals. |
| File Format | |
| Archival Resource Key | ark:/67531/metadc801914 |
| Language | English |
| Publisher Date | 2017-02-28 |
| Publisher Place | Denton, Texas |
| Access Restriction | Open |
| Subject Keyword | bond activation density functional theory (DFT) transition metal |
| Content Type | Text |
| Resource Type | Thesis |