Loading...
Please wait, while we are loading the content...
Similar Documents
Optical Fiber-Based Recording of Climbing Fiber $Ca^{2+}$ Signals in Freely Behaving Mice
| Content Provider | MDPI |
|---|---|
| Author | Tang, Jiechang Xue, Rou Wang, Yan Li, Min Jia, Hongbo Pakan, Janelle M. P. Li, Longhui Chen, Xiaowei Li, Xingyi |
| Copyright Year | 2022 |
| Description | The olivocerebellar circuitry is important to convey both motor and non-motor information from the inferior olive (IO) to the cerebellar cortex. Several methods are currently established to observe the dynamics of the olivocerebellar circuitry, largely by recording the complex spike activity of cerebellar Purkinje cells; however, these techniques can be technically challenging to apply in vivo and are not always possible in freely behaving animals. Here, we developed a method for the direct, accessible, and robust recording of climbing fiber (CF) $Ca^{2+}$ signals based on optical fiber photometry. We first verified the IO stereotactic coordinates and the organization of contralateral CF projections using tracing techniques and then injected $Ca^{2+}$ indicators optimized for axonal labeling, followed by optical fiber-based recordings. We demonstrated this method by recording CF $Ca^{2+}$ signals in lobule IV/V of the cerebellar vermis, comparing the resulting signals in freely moving mice. We found various movement-evoked CF $Ca^{2+}$ signals, but the onset of exploratory-like behaviors, including rearing and tiptoe standing, was highly synchronous with recorded CF activity. Thus, we have successfully established a robust and accessible method to record the CF $Ca^{2+}$ signals in freely behaving mice, which will extend the toolbox for studying cerebellar function and related disorders. |
| Starting Page | 907 |
| e-ISSN | 20797737 |
| DOI | 10.3390/biology11060907 |
| Journal | Biology |
| Issue Number | 6 |
| Volume Number | 11 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2022-06-13 |
| Access Restriction | Open |
| Subject Keyword | Biology Neurosciences the Olivocerebellar Circuitry Climbing Fibers Optical Fiber Photometry Lobule Iv/v of the Cerebellar Vermis Open Field |
| Content Type | Text |
| Resource Type | Article |