Loading...
Please wait, while we are loading the content...
Similar Documents
The Improved Three-Step Semi-Empirical Radiometric Terrain Correction Approach for Supervised Classification of PolSAR Data
| Content Provider | MDPI |
|---|---|
| Author | Zhao, Lei Chen, Erxue Li, Zengyuan Fan, Yaxiong Xu, Kunpeng |
| Copyright Year | 2022 |
| Description | The radiometric terrain correction (RTC) is an essential processing step for supervised classification applications of polarimetric synthetic aperture radar (PolSAR) over mountainous areas. However, the current angular variation effect (AVE) correction methods of three-step RTC processing are difficult to apply to PolSAR supervised classification because of the problem of interdependence between AVE correction and classification. To address this issue, based on the three-step semi-empirical RTC approach, we propose an improved AVE correction method suitable for the supervised classification of PolSAR. We make full use of the prior knowledge required for supervised classification and RTC processing, that is, samples and elevation data, to calculate the parameters of AVE correction by constructing a weight coefficient matrix. GaoFen-3 QPSI (C-band, quad-polarization) data were used to verify the proposed method. Experimental results showed that the proposed method is available and effective for PolSAR supervised classification. The new method can effectively remove the AVE effect in the PolSAR image, and the overall accuracy of PolSAR supervised classification can be improved about 9% compared to that without AVE correction. For the fine classification of forest types, the AVE correction can improve the classification accuracy by about 20%. |
| Starting Page | 595 |
| e-ISSN | 20724292 |
| DOI | 10.3390/rs14030595 |
| Journal | Remote Sensing |
| Issue Number | 3 |
| Volume Number | 14 |
| Language | English |
| Publisher | MDPI |
| Publisher Date | 2022-01-26 |
| Access Restriction | Open |
| Subject Keyword | Remote Sensing Imaging Science Polarimetric Sar Radiometric Terrain Correction Supervised Classification Angular Variation Effect |
| Content Type | Text |
| Resource Type | Article |