Loading...
Please wait, while we are loading the content...
Similar Documents
Classification of Building Damage Using a Novel Convolutional Neural Network Based on Post-Disaster Aerial Images
Content Provider | MDPI |
---|---|
Author | Hong, Zhonghua Zhong, Hongzheng Pan, Haiyan Liu, Jun Zhou, Ruyan Zhang, Yun Han, Yanling Wang, Jing Yang, Shuhu Zhong, Changyue |
Copyright Year | 2022 |
Description | The accurate and timely identification of the degree of building damage is critical for disaster emergency response and loss assessment. Although many methods have been proposed, most of them divide damaged buildings into two categories—intact and damaged—which is insufficient to meet practical needs. To address this issue, we present a novel convolutional neural network—namely, the earthquake building damage classification net (EBDC-Net)—for assessment of building damage based on post-disaster aerial images. The proposed network comprises two components: a feature extraction encoder module, and a damage classification module. The feature extraction encoder module is employed to extract semantic information on building damage and enhance the ability to distinguish between different damage levels, while the classification module improves accuracy by combining global and contextual features. The performance of EBDC-Net was evaluated using a public dataset, and a large-scale damage assessment was performed using a dataset of post-earthquake unmanned aerial vehicle (UAV) images. The results of the experiments indicate that this approach can accurately classify buildings with different damage levels. The overall classification accuracy was 94.44%, 85.53%, and 77.49% when the damage to the buildings was divided into two, three, and four categories, respectively. |
Starting Page | 5920 |
e-ISSN | 14248220 |
DOI | 10.3390/s22155920 |
Journal | Sensors |
Issue Number | 15 |
Volume Number | 22 |
Language | English |
Publisher | MDPI |
Publisher Date | 2022-08-08 |
Access Restriction | Open |
Subject Keyword | Sensors Remote Sensing Building Damage Deep Learning Earthquake Building Damage Classification Net (ebdc-net) Aerial Images |
Content Type | Text |
Resource Type | Article |